
Exploiting confusion matrices for automatic generation of

topic hierarchies and scaling up multi-way classifiers

Shantanu Godbole
Indian Institute of Technology - Bombay

Annual Progress Report

January 2002

Abstract

A common way to evaluate a multi-way classifier is a confusion matrix that plots,
for each of the learned concepts, the true class of test instances against the predicted
classes. Aggregate accuracy figures of the classifier are obtained by summing up the
diagonal entries of the confusion matrix. However, invaluable information about the
relationships amongst classes is often ignored. In this report we show various ways in
which the notion of similarity amongst subsets of classes from the confusion matrix can
be exploited.

First, we provide a mechanism of generating more meaningful intermediate levels
of hierarchies in large flat sets of classes. This provides valuable navigational aid in
browsing large text collections like Internet directories.

Second, we show how large multi-class classification tasks can be scaled up with the
number of classes. This angle to text classification has been ignored so far in much
existing work. New methods like Support Vector Machines have high accuracy but are
expensive to run, do not scale to large number of classes, and are not inherently designed
for multi-class tasks. We propose a two stage scheme where a confusion matrix from a
fast, mediocre accuracy classifier like naive Bayes can be used to derive a graph, where
classes are linked to each other based on their degree of confusion with each other. For
each class we then identify a sub graph where classes confuse with it. We have now
broken up the initial large multi-class problem into smaller sub tasks where, for each
class only its relevant sub graph needs to be considered. We use high accuracy, expensive
classifiers like SVMs for these sub tasks. The results are promising with significant
performance gains of the graph-based method over multi-class SVM classifiers. The
resulting accuracy is also significantly higher than the original naive Bayes classifier
and is comparable to the best multi-class SVM classifier.

1 Introduction

A common technique of evaluating a multi-way classifier is to see the confusion matrix
output as a result of the testing phase of the classifier. The confusion matrix plots, for
each of the learned concepts, the true class of test instances against the predicted classes.
Aggregate accuracy figures of the classifier are obtained by summing up the diagonal entries
of the confusion matrix. However, invaluable information about the relationships amongst
classes is often ignored. We explore various methods of exploiting the notion of similarity
amongst subsets of classes using the confusion matrix.

1

One use of the confusion matrix is to determine pairwise similarity between all sets
of classes using some similarity metrics. The resultant similarity values can be used to
run standard hierarchical agglomerative clustering algorithms, to get a dendrogram of the
original set of classes. This is a very interesting method to get hierarchies of classes where
none exist initially. These intermediate levels of hierarchies prove to be valuable navigational
aids when browsing large text collections like Internet directories. We can also identify
subsets of classes which are similar to each other, and we propose a method of building
multi-level classifiers. Having identified such similar sets of classes, we train a second
level of classifiers for these similar sets. These classifiers can be expensive, high accuracy
Support Vector Machines. Training times for SVMs scales up very well for these second
level classifiers and they perform well in terms of accuracy.

One dimension to large scale classification which has not been explored in sufficient
depth in the literature, is the scaling up of the classification systems with respect to a
very large number of classes. One domain with potentially large number of classes and
having very high dimensional data is text. In text classification, except Naive Bayesian
systems, most of the other systems involve solving complex sub-problems often exponential
in time complexity. Support vector machines [Joa98], which are known to give very good
accuracy, are not geared toward solving multi-class classification problems. Training time
for SVMs blows up with the number of dimensions, and text corpora are well known to have
several thousands of useful features. It is well known that Naive-Bayesian classifiers based
on a multinomial generative model of documents perform fairly well on standard test sets.
We propose a two stage scheme where a confusion matrix from a fast, mediocre accuracy
classifier like naive Bayes is used in the first stage to derive a graph. In this graph, classes
are linked to each other based on their degree of confusion with each other as indicated
in the confusion matrix. For each class we then identify a sub graph where the class has
outgoing links to other classes with which it is most likely to have caused confusion. In the
second stage, we take the predictions for each test instance from the first stage classifier,
and identify the sub graph of classes with the predicted class. We have now broken up
the initial large multi-class problem into smaller sub tasks where, for each class only its
relevant sub graph needs to be considered. We use high accuracy, expensive classifiers like
SVMs for these sub graphs where only binary classifiers are used to finally come up with
a prediction for the test instance. The results are promising with significant performance
gains of the graph-based method over multi-class SVM classifiers. The resulting accuracy
is also significantly higher than the original naive Bayes classifier and is comparable to the
best multi-class SVM classifier.

Section 2 begins with a detailed discussion of confusion matrices and gives details about
the idea of building multi-level classifiers to increase classification accuracy. Section 3
outlines a general method for automatically generating a hierarchy of classes from a given
flat set of classes. We introduce our technique for breaking up a multi-class classification
problem into smaller binary classification sub-problems using a graph-based approach in
section 4. Section 5 describes in detail our experiments with standard text datasets as well
as with one very large crawl of a public Internet directory. Section 6 contains comments,
conclusions, and future work.

2

2 Multi-level classifiers

The confusion matrix is a standard output representation of classification problems. It plots
the true class of instances in a classification problem against the predicted class. It gives
the predicted distribution of the test instances into each of the trained classes. For a n-way
classification task, it is a nxn matrix, with entries in row i summing up to the number of
test instances in class i. Ideally, with 100% accuracy, the nXn matrix only has diagonal
entries corresponding to all test documents being correctly predicted to their true class. In
reality, the confusion matrix is often smudged with small values being distributed all over.
In our experience, the confusion matrix gives much more information about the nature of
the classification problem involved.

Figure 1 shows a sample confusion matrix of a 20 class problem in text categorization.
20-newsgroups [20N] is a standard text categorization benchmark used in the literature.
The dataset contains 1, 000 articles from 20 newsgroups about various topics. We perform
a random 70%− 30% train-test split on the documents. In figure 1 the confusion over the
300 test documents for each of the classes is shown.

Figure 1: 20-newsgroups confusion matrix

Observations from a Confusion matrix: A large number of test instances of a partic-
ular class may be misclassified into another class or a set of classes. From domain knowledge
we often know that some classes are similar to each other. In the setting of the classification
problem it is not unreasonable to expect that these similar classes will ‘confuse’ amongst
each other. That means that if A and B are two classes similar to each other, then test
instances from A, when misclassified, get predicted quite often as B and vice-versa. A and
B are thus said to be confusing classes.

For the 20-newsgroups data, from domain knowledge we know that the articles in the
newsgroup alt.atheism are apt to be confused with articles in the class talk.religion.misc
and soc.religion.christian. Similarly, articles in rec.autos are more likely to be similar to

3

articles in rec.motorcycles than any of the other classes. Following this we can form sets of
classes, which purely by domain knowledge and intuition can be clubbed together manually
on the basis of perceived similarity. We form the following 4 groups:

• Politics/Religion: alt.atheism, talk.religion.misc, soc.religion.christian,
talk.politics.mideast, talk.politics.guns, talk.politics.misc

• Computers: comp.graphics, comp.windows.x, comp.os.mswindows.misc,
comp.sys.ibm.pc.hardware, comp.sys.mac.hardware, misc.forsale

• Recreation: rec.autos, rec.motorcycles, rec.sport.baseball, rec.sport.hockey

• Science: sci.crypt, sci.space, sci.med, sci.electronics

We re-organize the confusion matrix by interchanging the rows and the corresponding
columns of the classes. This maintains the diagonal property of the confusion matrix. This
is shown in Figure 2.

Figure 2: 20-newsgroups re-organized confusion matrix

We can see natural block-diagonal clusters appearing for the Politics/Religion, Computers,
and Recreation sets of classes. This ad-hoc and manual grouping of classes into sets gives
us surprisingly clean block diagonals. Such manual grouping of classes is clearly not pos-
sible for larger datasets with larger number of classes. We clearly need a better way to
identify sets of confusing classes. We outline our method for this in section 3. We can now
train a classifier for each of the clusters visible in the reorganized confusion matrix. The
justification for this is similar to the one presented in previous work in hierarchical classi-
fication [CDAR98]. Consider a tree-like topic taxonomy like the ODP. Car and Auto may
be very good discriminative words at the top level of the taxonomy leading into Buiness/
or Recreation/. However, they are useless from the point of discriminating classes at the
level Recreation/Autos. Similarly can is very often used as a stopword, but may be an
excellent discriminative feature at the Science/Environment level.

4

We train smaller classifiers on these identified sets of classes. We find that we get a
significant boost in accuracy. One reason for this is the better discrimination between noise
words and features as we move from a coarse-grained to a more fine-grained classification
granularity. This is the same experience with hierarchical classification. Since we have a
significantly smaller number of classes to deal with, we can now use more sophisticated
classification techniques and do better feature selection. This grouping of classes enables us
to use SVMs for higher accuracy at the level of smaller groups of classes(level 2 classifiers
in the experimental section. Using Naive-Bayes classifiers itself gives us quite a boost in
accuracy.

Consider the multinomial model for Naive-Bayesian text classification [Cha00].

Pr(d|c) =

(
d2

{n(d, t)}

)∏
t∈d

θ
n(d,t)
c,t

Here θc,t =
1+
∑

d∈Dc
n(d,t)

|T |+
∑

τ

∑
d∈Dc

n(d,τ)

We note here that the parameter smoothing quantity θc,t is dependent on the number
of word occurrences in documents of a class c and the total size of the vocabulary T .
In breaking up the classification problem into smaller sub problems, we do not alter the
documents contained within a class. That leaves us with the vocabulary size T . With a
smaller text classification task, T is bound to be smaller, θc,t is bound to be larger, and hence
discriminative words which were earlier swamped out by the sheer size of T and restrictions
on feature set size now make significant contributions to θc,t and hence to Pr(d|c).

3 Automatic generation of hierarchies

The confusion matrix gives us an insight into the similarity of classes in ‘confusion space’.
Two classes are similar if they confuse or mis classify test instances amongst a similar
set of classes. This confusion set includes the two classes themselves, represented by the
corresponding diagonal elements. We can treat each row of the confusion matrix to be a
vector belonging to the corresponding class. The ith coordinate of the vector is the degree
of confusion of the class in question with the ith class. We normalize all row vectors to one.
Ideally in the case of 100% accuracy, the ith coordinate of the ith vector will be 1 and all
other coordinates will be 0.

Consider the sample 4-class confusion matrix given in table 3. In confusion space repre-
sentation, the vector ~R = {4, 0, 6, 0} represents the class R. We now have a choice of various
similarity measures to find similarity of the class vectors in confusion space. We choose the
simple L1 distance measure. The L1 distance measure sums up the absolute differences
in coordinate values between the two vectors. We then take pair-wise similarity between
all pairs of classes of the matrix and make an upper triangular similarity matrix. Other
alternative distance measures are the L2 and KLdistance measures. L2 distance between
the class vectors would give slightly extreme scores but would still preserve the similarity
between classes. Dot product between the class vectors would indicate the inverse of sim-
ilarity. L1dist(~R, ~G) = 8 and L1dist(~B, ~Y) = 6 The resultant similarity matrix is shown in
Figure 4

This clearly shows us that the classes B and Y are very similar to each other. This

5

is what we also observe from the confusion matrix. The class pairs RG and RB are less
similar to each other. Classes R and Y are quite dissimilar.

R G B Y
R 4 0 6 0
G 0 4 6 0
B 0 0 7 3
Y 0 0 4 6

Figure 3: Confusion ma-
trix for 4 class problem

R G B Y
R 0 8 8 12
G - 0 8 12
B - - 0 6
Y - - - 0

Figure 4: Similarity ma-
trix with L1 distance

R G B Y
R 0 32 26 88
G - 0 26 88
B - - 0 18
Y - - - 0

Figure 5: Similarity ma-
trix with L2 distance

This similarity matrix is then given as an input to a Hierarchical Agglomerative Clus-
tering (HAC) algorithm [JW98]. Various HAC algorithms exist which differ on their policy
of combining clusters. We choose Ward’s method as it is known to give the most stable
clusters as investigated in previous work in hierarchical clustering of documents [EHW86].
The result of HAC is a dendrogram. In our case we get a dendrogram where similar classes
are clustered together along a reference distance axis showing similarity of classes. Various
HAC algorithms will give vastly different dendrogram structures [JW98]. Single-linkage
clustering is known to be confused by nearby overlapping clusters and it’s tendency to pick
out long string like clusters is known as Chaining. Complete-linkage clustering on the
other hand is known to give oblong spheroids as clusters. Other methods are known to be
prone to inversion. Inversion occurs when a cluster joins an existing cluster at a smaller
distance than that of a previous merge. Ward’s method is a known stable algorithm and
we found that it gives the best clustering for our particular problem. With Ward’s method
and L1 distance as the the inter-class similarity metric, the resulting dendrogram for the
20-newsgroups dataset based on the confusion matrix in figure 1, is shown in figure 6. In our
experiments, we found similar quality of clusters with the L1 and KLdistance measures,
though we report figures only with the L1 measure.

We note here that sci.electronics, which we manually grouped in a science cluster in
figure 2, actually falls in the computers cluster. This can also be seen in the last column of
sci.electronics in figure 2. The other science topics are not related to electronics whereas the
computer hardware classes, like comp.sys.mac.hardware, are bound to be about electronics
related things.

Figure 6: Dendrogram of 20-newsgroups

6

We can observe from the dendrogram the semantic similarity of classes in confusion
space. We propose to use the dendrogram to find the best grouping of classes at a top level.
Note that from the root of the dendrogram, as we proceed to the left of the figure beyond
a base distance of 1.0, the number of clusters merging per unit distance change drastically.
We can plot the distances at which clusters merge against the merge numbers for the
dendrograms of each dataset. Cluster merge distances for the 20-newsgroups, Reuters, and
ODP datasets are given in Figure 7.

We clearly note a point of inflection in the cluster merge distance plots. Beyond this
point of inflection, there are a very small number of highly dissimilar clusters. This can
be explained by the nature of Ward’s algorithm for hierarchical agglomerative clustering.
Consider some vector space with an underlying pattern of clusters. Very similar clusters
are consolidated first as the algorithm proceeds. Toward the end of the HAC run, we will
reach a stage when huge clusters are left to be merged but the distance between them is
very large. This indicates that these clusters are not similar to each other. This analogy
can be applied to our clustering of classes in confusion space. After the point of inflection,
only highly dissimilar groups of classes are left to be merged. For the ODP dataset, we see
this point to occur at merge number 335. Since there are 359 classes, we are left with 22
top level clusters of classes largely dissimilar to each other. Similarly, the 20-newsgroups
dataset gives us 5 groups and the Reuters dataset gives us 8 groups. These are the groups
we use for the multi-level classifiers we build as detailed in section 2.

4 Graph based method using binary classifiers

The breaking up of a multi-class classification task into a set of binary classification tasks is
a well studied technique. This technique is employed in Support Vector Machine classifiers.
In standard binary SVM classifiers, the aim is to find the maximum margin hyper-plane
separating instances of two classes. Two techniques are used to solve multi-class problems
using SVMs. The standard technique for N -class SVMs is to construct N one-vs-others
binary SVMs, 1 for each class. The winning classifier is the one that gives the maximum
positive distance to the test instance from the separating hyper-plane. In the other tech-
nique, all possible pairs of classes are used in making binary SVM classifiers. A majority
voting scheme is followed, wherein each classifier votes for it’s winning class, and the winner
is the class with the largest number of accumulated votes or largest sum of margins as out-
put by the classifiers. Recent work along these lines is the use of binary SVMs to construct

(a) 20-newsgroups with
20 classes

(b) Reuters with 60
classes

(c) ODP with 359
classes

Figure 7: Merge distances for the datasets plotted against cluster merge number

7

Decision DAGs [PCST00]. Experiments with DAGSVM showed it to be at least as accurate
as the other SVM multi-class methods and sometimes better in terms of accuracy and also
slightly better in terms of running time and kernel evaluations [PCST00].

C1 C2 C3 C4
C1 1.0 0 0 0
C2 0.3 0.4 0.2 0.1
C3 0 0.1 0.5 0.4
C4 0 0.1 0.4 0.5

Figure 8: Normalized 4x4 confu-
sion matrix

C1 C2 C3 C4
C1 0 0.3 0 0
C2 0 0 0 0
C3 0 0 0 0.4
C4 0 0 0.4 0

Figure 9: Equivalent Incidence ma-
trix

We introduce an algorithm to efficiently solve multi-class classification problems. From
the confusion matrix, for a given class, we can find which other classes its test instances get
misclassified into. This can be very efficiently done with reasonable accuracy using a Naive
Bayesian classifier. Let Cij denote the entry in the ith row and jth column in the Confusion
matrix. If Cij is above a threshold t, say 5% of the sum of all entries in the ith row, then we
put the value of Cij in the position Iji, where Iji denotes the entry in the jth row and ith

column of the Incidence matrix, which is defined in the following. Thus we are collecting in
the same jth row in the incidence matrix, the classes which are likely to be confused with
class j. The incidence matrix then directly leads us to a weighted directed graph, where
a non-zero value in Iji indicates an edge from node j to i. A sample normalized example
confusion matrix is shown in table 8 and its corresponding incidence matrix is shown in
table 9. The corresponding incidence graph is shown in figure 10(a).

(a) Sample from Confusion Matrix (b) A more general case

Figure 10: Incidence Graphs

Approach 1: The graph in figure 10(a) can be interpreted as follows. If instances of class
i are confused with a class j as per the threshold parameter, then the node j in the graph
points to all such i-like classes where j causes confusion. During the testing phase of the
classifier, we run binary classifiers between a node and each of the nodes pointed to by arcs

8

going out it. Thus, if an instance is predicted as belonging to class i, then we must check
this against all ij combinations indicated in the I matrix.

Special cases: We will often get graphs which are more complicated in connecting
similar confusing classes. A more realistic sub-graph is shown in figure 10(b). In this graph,
i has 3 outgoing edges to nodes j, k, and l. This means that when a classifier predicts a test
instance to belong to class i, we must further check this with ij, ik, and il binary classifiers.

1. If all binary classifiers label the test instance as i, then the test instance is labeled as
i.

2. If exactly one classifier gives a contrary prediction (say k in figure 10(b)) but all other
classifiers predict i, then we give the test instance the class label k. We justify this by
saying that ik is a classifier with the ability to finely judge between instances of class i and
k. The other classifiers choose i because they do not have the ability to make fine decisions
on problem cases like the test instance. The ik classifier has more discriminatory power in
deciding whether the instance belongs to class i or not.

3. If all but two classifiers (say k and l in figure 10(b)) predict the test instance to be i,
then the final class of the test instance is the result of running a binary classifier between
the two disagreeing classes i.e. the result of a kl binary classifier.

4. In case there is more disagreement between 3 or more binary classifiers, we will simply
pick the prediction of the classifier with the highest weight edge from i. In the figure 10(b),
if the ij classifier predicts j, the ik classifier predicts k, and the il classifier predicts l, then
we will choose the prediction of the ik classifier because ik is the edge with the highest
weight.

Maximum possible improvement: The maximum possible improvement by this
method is bounded by the Confusion matrix. If the test instance is classified into a class
node from where there is no outgoing edge to the true class, then that test instance cannot
be salvaged by this method.

Approach 2: Some of the special cases in the above approach do not stand to closer
inspection. Cases 3 above is a case in point. Consider a pool based tournament with an
all-pairs contest scenario. If player A wins her matches against all opponents except player
B, but player B has won some and lost some of her other matches, it is hard to determine
who is a better player between A and B. Some contention resolving scheme like margin
of victories or total points scored is then used to pick a winner. This can get cyclically
complicated if B wins all her matches except one, say against some C.

In our second approach we identify the incidence graph in the same manner as in ap-
proach 1. Following this however, we run binary SVM classifiers amongst the nodes i and
any other nodes it points to in one of the following configurations.

Max-Wins: All pairs of classes in the sub-graph originating from the predicted class
i are considered and individual winning classes of the binary classifications are considered.
For each class, the winning margin in each binary classification is considered. The winning
class is the one with the highest sum of margins.

One-vs-Rest: In a sub-graph of k number of classes originating from the predicted
class i, k one-vs-other classifiers are constructed. The result of each binary classification
is a real number, with positive numbers indicating that the solitary class has won, and a
negative number indicating that the group of ‘other’ classes has won. The winning class
is the one with the largest real value of the margin. In case all k one-vs-rest classifiers
return negative numbers, the above heuristic still holds. It means that the classifiers with

9

the largest negative margins were most confident about the test instance not being of the
solitary class. This is the method we use in subsequent experiments.

5 Experiments

5.1 Datasets

20-newsgroups: The 20-newsgroups dataset [20N] is a collection of 20, 000 news wire
articles from 20 Usenet groups containing 1, 000 articles each. This dataset is not pre
processed into training and testing sets. We randomly chose 70% of the documents for
training and the remaining 30% for testing. The corpus contained around 75, 000 words. A
number of features were selected by the mutual information metric. All words were stemmed
using a Porter stemmer [Por80], all HTML tags were skipped, and all header fields except
subject and organization of the posted article were ignored.

Reuters-21578: The Reuters-21578 Text Categorization Test collection [Reu] is a stan-
dard text categorization benchmark. It contains 135 classes. We choose only those 60 classes
which have more than 10 training documents. This resulted in 8819 training documents
and 1887 testing documents. The Reuters dataset comes pre-processed in that training and
testing documents are separated according to some standard known split criteria. We used
the Mod-Apte split but further ignored multi-class test instances. We ignored multi-class
test instances because we wanted to see if confusion amongst classes can be resolved by using
multi-level classifiers. For features, XML tags were ignored and the words were stemmed.

The ODP dataset: The Open Directory Project crawled dataset is a crawl of the ODP,
a popular Internet directory 1. The crawl consists of 177, 600 documents from 359 classes.
The crawl took categories from the ODP tree where approximately 1, 000 documents were
present. The classes included both internal nodes and leaf nodes of the taxonomy. In the
automatic hierarchy generation experiments reported subsequently, all classes were consid-
ered participants in a flat classification scheme where parents classes from the directory
directly competed with their children, if any. Again, for these HTML pages, HTML tags
were skipped and the words were stemmed.

Experimental setup: The 20-newsgroups and Reuters datasets were used in experiments
with multi-level classifiers. All datasets were used for automatic generation of class hierar-
chies. Only the 20-newsgroups dataset was used to evaluate the binary graph based method
using binary SVM classifiers. All experiments were performed on a P4 1.4GHz machine
with 512 MB RAM running Linux. The software used for Naive Bayes and multi-class SVM
experiments was Rainbow [McC96]. For binary SVM experiments SVMLight [Joa99] was
used.

5.2 Results

Multi-level classifiers The accuracies for the multi-level classification technique are
shown in tables 11 and 12. All is a flat naive Bayes classifier from which the initial confu-
sion matrix is obtained. L1−Root denotes the first level classifier which only classifies test

1http://dmoz.org/

10

Dataset Group Method Accuracy
20ng All NB 81.69%

. L1-Root NB 88.19%

. L2 NB 88.99%

. L2 SVM 89.82%
Reuters All NB 69.23%

. L1-Root NB 85.07%

. L2 NB 76.51%

. L2 SVM 76.33%

Figure 11: Overall accuracy

Group Class Flat L2-NB L2-SVM
1 alt.atheism 83.66 84.32 72.92
. soc.religion.christian 89.13 95.33 93.27
. talk.religion.misc 42.40 66.67 71.93
2 comp.graphics 84.00 90.13 85.86
. comp.os.ms-windows.misc 12.87 21.80 84.53
. comp.sys.ibm.pc.hardware 79.13 95.60 85.07
. comp.windows.x 84.00 88.07 86.13
3 comp.sys.mac.hardware 88.87 95.73 90.73
. misc.forsale 78.93 91.33 89.93
. sci.electronics 79.27 93.27 89.80
4 rec.autos 91.60 95.86 95.06
. rec.motorcycles 95.00 97.00 94.80
. rec.sport.baseball 95.53 97.60 97.73
. rec.sport.hockey 97.67 98.00 98.47
. sci.crypt 93.00 99.13 98.13
. sci.med 91.93 96.80 97.07
. sci.space 93.07 98.33 96.80
5 talk.politics.guns 89.93 96.40 90.93
. talk.politics.mideast 91.40 95.07 92.47
. talk.politics.misc 72.40 83.40 84.67

Figure 12: Details for 20-newsgroups

Figure 13: Experiments with multi-level classifiers

Method Threshold Running Acc%
t time

(mins.)
MC NB - 1.5 79.50

MC SVM - 115 84.05
Graph SVM 0.03 50 83.33

Figure 14: Performance and
Accuracy

No. Class MC NB MC SVM Graph SVM
t=0.03

1 alt.atheism 81.67 71.91 74.58
2 comp.graphics 73.33 79.33 81.00
3 comp.os.ms-windows.misc 09.33 83.00 74.00
4 comp.sys.ibm.pc.hardware 82.33 75.33 80.00
5 comp.sys.mac.hardware 83.67 87.67 84.33
6 comp.windows.x 80.00 80.00 79.67
7 misc.forsale 71.33 77.67 78.67
8 rec.autos 90.00 89.33 91.33
9 rec.motorcycles 94.33 95.33 90.00
10 rec.sport.baseball 91.33 92.67 94.67
11 rec.sport.hockey 96.67 98.00 92.67
12 sci.crypt 92.00 96.33 92.00
13 sci.electronics 76.00 79.00 81.00
14 sci.med 86.33 94.33 86.33
15 sci.space 90.33 93.00 90.33
16 soc.religion.christian 89.33 92.00 89.67
17 talk.politics.guns 88.33 86.00 85.33
18 talk.politics.mideast 90.67 91.33 92.33
19 talk.politics.misc 71.00 69.00 68.33
20 talk.religion.misc 52.00 49.67 60.33

Figure 15: Details for 20-newsgroups

Figure 16: Experiments with graph-based method

articles into on of the sub-groups of classes. L2 are the second level classifiers trained on a
particular sub-group. The sub-groups are obtained from the dendrograms as explained in
section 3.

Automatic generation of hierarchies The dendrogram for the entire 20-newsgroups
dataset is already shown in figure 6. A partial dendrogram for the Reuters dataset is shown
in figure 17 in the appendix. Snippets from the dendrogram for the ODP dataset are shown
in figures 18, 19, and 20 in the appendix.

Graph based method using binary classifiers The running time and accuracy figures
for the graph-based method of binary classifiers are given in tables 14 and 15. MC NB is
a multi-class naive Bayes classifier. MC SVM is a multi-class SVM classifier. The graph-
based method of binary classifiers is implemented as the one-vs-rest method of approach 2
in section 4.

11

5.3 Observations

Automatic generation of hierarchies From the dendrograms of figures 6, 17, and 18
19 20, we see an excellent semantic grouping of classes. For the 20-newsgroups dataset, as
expected we see that newsgroups pertaining to the religious topics are clustered together.
Similarly newsgroups pertaining to computers, science, and recreation are also clustered
together. This is in line with our expectations and very closely matches the manual reor-
ganization we did in figure 2.

For the Reuters dataset, we see the clustering of the classes related to finance together.
The classes dlr, yen, dmk, money-fx, interest are clustered together. The classes barley,
corn, grain, wheat, cotton, rice, orange and sugar are clustered together, being classes
related to foodstuff. Economic indicator classes like cpi, wpi, gnp, jobs, housing are also
grouped together.

For the ODP dataset too we see similar interesting results. The interesting clusters for
figure 18 are

• Recreation/Antiques, Recreation/Collecting, Shopping/Antiques and Collectibles

• Games/Puzzles, Shopping/Children, Shopping/Toys and Games, Home/Kids, Soci-
ety/Holidays

In figure 19, the most striking result is the grouping together of all the Sports classes. In
figure 20, the interesting clusters of some of the classes are

• Computers/Internet/WWW, Reference/Directories, Reference/Archives, Reference/Libraries,
Reference/Geography

• Computers/Education, Computers/Internet

• Computers/Open Source, Computers/Software/OS/Linux

• News/Weather, Science/Earth Sciences, Reference/Maps, Regional/Polar Regions,
Science/Methods and Techniques.

We observe that classes from completely separate parts of the original ODP tree come
together based on their similarity. The best example of this is the News-Reference-Science-
Regional cluster in figure 19. Documents about News/Weather, Science/Earth Sciences,
Reference/Maps, and Regional/Polar Regions are bound to talk about similar things, con-
tain the same words in comparable frequencies, and often be confused with each other
in classification. This is exactly the motivation of ‘soft-links’ in Internet directories like
the ODP. Since a particular top level theme like News/Weather prevents documents about
Science, Reference, or Regional from being put together, soft-links are used which are char-
acterized by the ‘Also See’ links we find in the directories. The ODP is a manually populated
directory and our technique by identifying clusters as above can suggest the soft-links to
be put to provide a better browsing experience to the user. This holds good for the Shop-
ping and Regional sub-trees also which are known to be extremely miscellaneous in nature,
and our dendrogram identifies similar classes based on co-confusion and not on their actual
location within the ODP tree.

12

Graph based method using binary classifiers We can draw some interesting observa-
tions from tables 14 and 15. Multi-class Naive-Bayes is the fastest in terms of running time
and has a mediocre accuracy of 79.50% for the 20-newsgroups dataset. Multi-class SVMs
have a far better accuracy of 84.05%, but at the same time take a long time to train. The
graph-based method employing binary SVM classifiers, is in the middle in terms of training
time. The accuracy of this new method is very good at 83.33% which is comparable to
multi-class SVMs. This slight accuracy disadvantage is offset by the gain in performance
and training times that we observe. Especially on the issue of scalability, for extremely
large datasets like crawls of public Internet directories, running multi-class SVMs will be
impractical. Our method however requires only multiple binary classifiers to be built, which
is fast. Moreover, constructing an Incidence matrix is a one time job, given the confusion
matrix for the multi-class Naive-Bayes classifier. The accuracy improvement of our method
over multi-class Naive-Bayes justifies building the multi-class Naive-Bayes classifier to get
it’s confusion matrix to give as input to the Incidence matrix construction step.

For any given classification task, we spend some time in the beginning exploring the
optimal feature set size to use. We do the same in case of our two multi-class classifiers.
For our graph-based method, we would still like to do optimal feature set selection to get
the best possible advantage of the constituent binary classifiers. However, this is difficult
to do for all the varying sizes and configurations of the binary classifiers. Still, choosing
a reasonable number of features, 3000 in this case, we achieve significant accuracy and
performance benefits.

6 Conclusion

We have seen some interesting uses of the confusion matrix in identifying similar sets of
classes. The automatic generation of hierarchies as dendrograms gives very interesting
results as we have observed. As a part of future work, this needs to be directly compared
with word based hierarchical document clustering to see the quality of the resultant clusters.
The notion of intermediate levels of similar classes can lead to interesting future work on
approximately labelling test instances amidst lot of confusion. When the classifier cannot
confidently label a test instance into one of the learned target concepts, we can predict the
instance to belong to one of the intermediate group of similar classes.

The graph based method of breaking up a multi-class problem into sets of binary sub-
problems yields excellent performance gains and gives accuracy comparable to the highly
accurate multi-class SVM techniques. Hence, we see that using the confusion matrix in these
various ways gives us some useful techniques to scale up large scale multi-class classification
systems.

References

[20N] The 20 newsgroups dataset at
http://www.ai.mit.edu/∼jrennie/20 newsgroups/.

[CDAR98] Soumen Chakrabarti, Byron Dom, Rakesh Agrawal, and Prabhakar Raghavan.
Scalable feature selection, classification and signature generation for organizing
large text databases into hierarchical topic taxonomies. VLDB Journal: Very
Large Data Bases, 7, 1998.

13

[Cha00] Soumen Chakrabarti. Data mining for hypertext: A tutorial survey. In ACM
SIGKDD Explorations, 1(2), 2000.

[EHW86] A. El-Hamdouchi and Peter Willett. Hierarchic document clustering using
ward’s method. In Information Processing and Management, 1986.

[Joa98] Thorsten Joachims. Text categorization with support vector machines: learn-
ing with many relevant features. In Proceedings of ECML-98, 10th European
Conference on Machine Learning, 1998.

[Joa99] Thorsten Joachims. Svmlight - support vector machines.
http://svmlight.joachims.org/, 1999.

[JW98] Johnson and Wichern. Applied Multivariate Statistical Analysis, chapter 12.
Clustering, Distance Methods, and Ordination. Prentice Hall, India, 1998.

[McC96] Andrew Kachites McCallum. Bow: A toolkit for statistical language model-
ing, text retrieval, classification and clustering. http://www.cs.cmu.edu/ mccal-
lum/bow, 1996.

[PCST00] J. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin dags for multiclass
classification, 2000.

[Por80] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[Reu] The Reuters-21578 Text Categorization Test Collection at
http://www.research.att.com/∼lewis/reuters21578.html.

14

7 Appendix

Figure 17: Partial dendrogram of Reuters

Figure 18: Partial dendrogram of ODP - 1

15

Figure 19: Partial dendrogram of ODP - 2

16

Figure 20: Partial dendrogram of ODP - 3

17

