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Abstract—Lack of supervision in clustering algorithms often
leads to clusters that are not useful or interesting to human
reviewers. We investigate if supervision can be automatically
transferred to a clustering task in a target domain, by providing
a relevant supervised partitioning of a dataset from a different
source domain. The target clustering is made more meaningful
for the human user by trading off intrinsic clustering goodness
on the target dataset for alignment with relevant supervised
partitions in the source dataset, wherever possible. We propose
a cross-guided clustering algorithm that builds on traditional
k-means by aligning the target clusters with source partitions.
The alignment process makes use of a cross-domain similarity
measure that discovers hidden relationships across domains
with potentially different vocabularies. Using multiple real-
world datasets, we show that our approach improves clustering
accuracy significantly over traditional k-means.

Keywords-Clustering methods; Transfer Learning; Relation-
ship Discovery;

I. INTRODUCTION

Clustering is a critical tool for data exploration, and
owes its popularity to its unsupervised nature. Clustering
variations use different similarity measures and intrinsic
goodness measures to group ‘similar’ data items together
[1]. However, maximizing intrinsic goodness often does
not correlate well with human notions of interestingness or
usefulness. This happens largely because such notions are
often hard to capture in terms of unsupervised similarity
measures over representations of the data items. Thus, the
same absence of supervision that makes clustering popular,
also leads to challenges in interpreting its outcome. Obtain-
ing supervision, as the alternative, requires expertise and
significant effort from human supervisors.

In this paper, we investigate if supervision can be reused
or transferred from previous tasks to guide a new clustering
task. In the new setting, a clustering algorithm is provided
with a set of data items and a similarity measure from
a target domain. Additionally, it has access to a data-set
from a different domain, which we call the source domain,
along with a supervised partitioning of the source data
items. This partitioning may have been manually created,
as for training data in the classification setting, or may be
a manually reviewed and refined version of a clustering
output. We will assume that target clusters that are ‘similar’
to the source partitions are more useful to the human

user. To be able to use this source supervision, the target
clusters need to be ‘aligned’ with relevant source partitions.
Note that this alignment unavoidably comes at the cost of
clustering goodness, as defined solely in terms of the target
similarity measure. If no relevant source partitions are found,
clustering using the target similarity measure remains the
fall-back option.

This problem is an instance of transfer learning [2]. This
variant, where unsupervised learning needs to be performed
in the target domain given supervision in the source domain,
has not received much attention in the literature.

In practice, such relevant supervision is often readily
available. Lawyers involved in corporate legal audit routinely
need to group and categorize emails and other documents for
different corporate cases. They can benefit significantly if
categories created in one case can be used to guide another.

As another example, consider a service desk, where qual-
ity analysts need to group customer survey comments in dif-
ferent corporate accounts. Figure 1 shows some illustrative
phrases from surveys for an automobile company, which is
the target domain. Clustering based only on target data yields
clusters corresponding to Agents, Parts and Accessories, and
Servicing (Fig 1(a)). However, these may not be the clusters
that the analyst desires. Instead, if he wanted clusters around
Personnel and Car-related issues, he could provide a survey
collection from a related account as the source collection,
where he has already created supervised partitions around
Motor Cycles Issues and Sales Personnel (Fig 1(b)). This
leads to deviation from the original target clusters to align
with the source partitions. Note that this deviation should
be less when the source partitions are less ‘relevant’. For
example, the desired Car-related cluster would not emerge
as clearly had the analyst provided a source collection
partitioned around Computer Parts and IT Technicians.

Alternatively, if the desired clustering is around customer
sentiments, a different source collection that is partitioned
around sentiments could be provided. Fig 1(c) shows the re-
sult of providing such supervision from a telecommunication
domain, which is very different from the target automobile
domain, apart from the sentiment-related concepts. Observe
that the desired number of clusters in the target need not
be the same as the number of partitions in the source do-
main. ‘Irrelevant’ partitions from the source, e.g. a partition



Figure 1. Example of different sources influencing target clustering. Rectangles represent source partitions and ovals represent target clusters.

around Signal Quality issues, should not influence the target
clustering. Also, target concepts that are unrelated to any
source partition (‘Car Parts’ in Fig 1(c)) should be clustered
purely based on the target similarity measure.

In this paper, we propose a novel framework that aims
to strike a balance between clustering goodness on a target
domain and alignment with a relevant supervised partitioning
of a source collection. For this, we present a cross-guided
clustering algorithm that uses conceptual similarities across
domains to guide the traditional k-means paradigm. A cru-
cial aspect is measuring similarity of clusters across domains
where the correspondences between the data attributes or
vocabularies is not known. To discover and measure hidden
relationships across domains, we propose a cross-domain
similarity measure based on pivot words across vocabularies.
We demonstrate using multiple real-world text datasets that
cross-guided clustering improves clustering accuracy signif-
icantly over traditional k-means by transferring supervision
from a related domain.

The rest of our paper is organized as follows. We first
review our problem in the light of related work in Section II.
Then we formalize our problem and motivate the cross-
guided clustering framework in Section III. In Section IV
and Section V, we present our clustering algorithm and the
cross domain similarity measure. In Section VI, we present
an analysis of favorable and unfavorable conditions for
cross-guided clustering and propose a quantitative measure
for cross-domain ‘clusterability’. Finally, we present exper-
imental results in Section VII and conclude in Section VIII.

II. RELATED WORK

In this section, we review our work in the light of related
research from the areas of clustering and transfer learning.

Semi supervised clustering aims to improve clustering
performance by limited supervision in the form of a small
set of labeled instances. Wagstaff et. al. [3] provide labeled
data in the form of pair-wise must-link and cannot-link
constraints among data instances. The original clustering
criterion is modified to additionally minimize the number
of constraint violations. Basu et al. [4] use labeled data
to generate initial seed clusters as well as use constraints
generated from labeled data to guide the clustering process.

Alternatively, a small set of labeled instances can be used
to learn a parameterized distance function [5], [6]. The co-
clustering approach [7], [8] clusters related dimensions si-
multaneously through explicitly provided relations between
them, such as words and documents, or people and reviews.
Bhattacharya and Getoor [9] use a combination of attribute-
based and relational similarity for collective clustering over
observed relationships among the data items. In contrast, in
our work in this paper supervision is discovered in the form
of cluster level similarities obtained from labeled instances
from a different domain, having different but related labels.

Our work is closely related to the area of transfer learning
[2]. Several methods aim to improve the accuracy of a
supervised classifier by learning from labeled data from a
different domain [10], [11], [12], [13], [14]. For example,
Blitzer et.al. [13] investigate domain adaptation for super-
vised sentiment classification using pivot features to link the
source and target domain. The pivot features are chosen by
selecting frequently occurring common words that have high
mutual information with class labels in the source domain.
Dai et al. [14] propose a transfer learning algorithm for text
classification using an EM-based naive Bayes classifier. In
the context of unsupervised transfer learning, Dai et al. [15]
propose self-taught clustering to cluster a small collection of
unlabeled data in a target domain by using a large amount of
auxiliary unlabeled data in a source domain. They propose
a co-clustering-based method that simultaneously clusters
target and auxiliary data where the source clustering influ-
ences target clustering through a common set of features.
Unlike all these methods, we focus on improving clustering
performance in a target domain using labeled data from a
different, but potentially related source domain, where the
relations across domains are hidden and measuring them is
non-trivial.

III. PROBLEM FORMULATION

As in a standard clustering problem, we are given a set of
data items {t1, t2, . . . , tn}. We call the domain of this data
the target domain T . Our goal is to partition the data items
into k target clusters {Ct

1, C
t
2, . . . , C

t
k}. We consider a hard

clustering setting, where each of the target data items ti is
assigned to exactly one cluster Ct

j . In the k-means setting,



the partitioning of the data items is done based on nearness
to one of k centroids {C̄t

i}, based on a given distance
measure dt(tj , C̄t

i ) between a data item and a centroid in
the target domain. The divergence Dt(Ct

i ) of any cluster
Ct

i is the summed squared distance of each data item in that
cluster from the corresponding ‘centroid’ C̄t

i :

Dt(Ct
i ) =

∑
tj

(dt(tj , C̄t
i ))2δt(tj , Ct

i )

where δt(tj , C̄t
i ) is 1 if item tj is assigned to cluster Ct

i

and 0 otherwise. The standard goal of k-means clustering is
to find the k best centroids for which the total divergence∑

iD
t(Ct

i ) over all clusters in the target domain is mini-
mized.

In our new setting, we are additionally given a different set
of items {s1, s2, . . . , sm}, possibly from a different domain
S, which we call the source, and an assignment of those
items to k′ source partitions {Cs

1 , C
s
2 , . . . , C

s
k′}. For each

source partition, we also have a source centroid C̄s
j .

For notational convenience, in the rest of the paper, we
use the superscripts s, t and x to indicate source, target and
cross domain, respectively.

We would like to align the target clusters with the source
partitions to guide the target clustering. However, the source
and target domains may be different. In other words, the
vocabulary V s of the source — the attributes over which
the data items and centroids are defined — may be different
from the target vocabulary V t. As a result, the distance
measure dt(), which assumes the same vocabulary for the
compared items or centroids, may not apply across domains.
In such cases, a different cross-domain distance measure
dx(ti, sj) is needed to compare clusters across domains.
For now, we assume that dx() is also provided to us. In
Section V, we will discuss how such a measure may be
defined.

Just as the target distance measure dt() is used to assign
target data items to target centroids and measure target
divergence, the cross domain distance measure dx() is used
to align the target centroids with the source centroids and
measure cross domain divergence. However, the nature of
the cross domain alignment is different from that of target
items to target centroids — each target cluster should be
aligned with at most one source partition, and vice versa.
In our example, source S1 has one ‘Personnel’ partition, so
we would want all target documents similar to ‘Personnel’
documents to be grouped into a single target cluster. Also,
if the source has a separate ‘Car related’ partition, the target
ideally should not have a single cluster related to both
‘Car’ and ‘Personnel’. Given such a cross-domain alignment
between source partitions and target clusters, we measure the
cross domain divergence as

Dx(Ct, Cs) =
∑
Ct

i

∑
Cs

j

(dx(C̄t
i , C̄

s
j ))2δx(Ct

i , C
s
j )|Ct

i | (1)

where δx(Ct
i , C

s
j ) is 1 if Ct

i is aligned with Cs
j , and 0

otherwise. Observe that weighting by the size |Ct
i | of each

cluster Ct
i is needed to make Dx(Ct, Cs) comparable to

Dt(Ct
i ), which is obtained by summing over the distance of

each data item in Ct
i from its centroid.

Assigning items to centroids in the target is simple given
dt(). But finding a cross domain alignment is more complex.
We construct a bipartite cross domain graph Gx that has
one set of vertices S corresponding to source centroids, and
another set T corresponding to target centroids. We add an
edge between every pair of vertices (i, j) from S and T
where the weight of the edge is given by 1 − dx(C̄t

i , C̄
t
j).

Then finding the best alignment is equivalent to finding the
maximum weighted bipartite match in the graph Gx. Recall
that a match is a subset of the edges such that any vertex is
spanned by at most one edge, and the score of a match is
the sum of the weights of the included edges.

The only issue with defining the cross domain alignment
as the best match in Gx is that it is a complete bipartite
graph. So, the maximum match forces every target cluster
to be aligned with one source partition (given enough source
partitions), however dissimilar any target cluster may be with
the source. One solution may be to disregard all edges in the
match with weights below some threshold. Alternatively, we
modify the definition of δx(C̄t

i , C̄
s
j ) for Dx() to be the match

weight if Ct
i is aligned with Cs

j , and 0 otherwise. With this
modified definition, weaker the match with the source, the
lower is the penalty for divergence from that source centroid.
For the ‘Car’ cluster in our example from the introduction,
penalty for divergence from the ‘Bike’ partition is higher
than that from a ‘Computer’ partition.

Given k target centroids, an assignment of target items to
these centroids, and an alignment between source partitions
and target centroids, the combined divergence measure looks
to strike a balance between target divergence and cross
domain divergence:

D(Ct, Cs) = αDt(Ct) + (1− α)Dx(Ct, Cs) (2)

where α captures the relative importance of the two diver-
gences over all clusters. Observe that α=1 corresponds to
target-only clustering, while α=0 leads to target clusters that
are as similar as possible to source partitions, but not tight
internally. In the cross clustering problem, the goal, given a
source partitioning Cs, is to find k centroids in the target
that minimize the combined divergence D(Ct, Cs).

In the next section, we present an iterative algorithm that
minimizes this combined divergence.

IV. CROSS-GUIDED CLUSTERING ALGORITHM

Our algorithm for minimizing the objective function in
Equation (2) starts from an initial set of k target centroids
and then proceeds by iteratively reducing the divergence by
an alternating optimization approach. This is similar in spirit
to the traditional k-means algorithm, that executes two steps



in every iteration — first assign items to existing centroids,
and then reduce divergence by re-estimating the centroids
based on the current assignment of items. Our cross-domain
divergence depends both on the current centroids and the
cross domain alignment. As a result, we go over one
additional step in every iteration — first a) update the item
assignment based on the current centroids, then b) update the
cross-domain alignment based on the current centroids, and
finally c) minimize divergence by re-estimating the centroids
based on the current item assignment and the current cross-
domain alignment.

Updating the item assignment is straight forward —
each item gets assigned to its nearest centroid according
to the target distance measure dt(). For updating the cross-
domain alignment, we find the maximum weighted bipartite
matching between the source and target centroids, using the
popular ‘Hungarian algorithm’ [16].

Re-estimating the target centroids to minimize divergence
depends on the target data items, as well as the source
centroids. To find the re-estimation rule, we need to dif-
ferentiate the divergence function with respect to the target
centroids. Our divergence function is carefully designed to
ensure differentiability with respect to target centroids. On
differentiating and explicitly solving d(D(Ct,Cs))

d(C̄t
i
)

= 0, we

obtain the update rule for the ith centroid C̄t
i to be

C̄t
i =

α
∑

ti∈Ct
i
ti + (1− α)

∑
j δ

x(Ct
i , C

s
j )C̄s

j

α|Ct
i |+ (1− α)|Ct

i |
∑

j δ
x(Ct

i , C
s
j )

(3)

The intuitive interpretation of the update rule is as follows.
As in traditional k-means, each centroid tries to move to the
‘center’ of the items currently assigned to it. This is reflected
in the first term of the numerator. The other movement
in the cross-domain setting is toward its matched centroid
from the source. This is captured by the second term in
the numerator. However, this movement is dampened by the
extent of match with the source centroid — a target centroid
that does not have a significant match in the source domain
is not affected by the source at all. Observe that this is one
significant difference with movement in the target domain.
All target data items are assumed to correspond to some
target centroid — in contrast, a target centroid may not have
a corresponding source centroid. Also, the two movements
are traded off by the parameter α, which can be thought of
as a ‘prior’ on the relevance of the source and the target
over all clusters.

The high-level cross-guided clustering algorithm is de-
scribed in Figure 2. The algorithm creates the source cen-
troids in step 3, and initializes the target centroids in steps
5-8. Initialization is a challenge even in the traditional k-
means algorithm, since the algorithm is prone to getting
caught in local minima. The challenge becomes more signif-
icant for cross-guided k-means because of the cross-domain
alignment step involved. Until the initial clusters achieve

Algo CrossGuidedCluster
Params: Doc Sets Dt, Ds, Partitioning Cs on Ds, Int k

1. Establish pivot vocabulary between source and target
2. Create projection matrix for each vocabulary

3. Compute source centroids Cs

4. Project each source centroid to pivot vocabulary

% Initialize target clusters
5. Initialize k centroids
6. Iterate n times or until convergence
7. Assign each document in Dt to nearest centroid
8. Recompute k centroids from assigned documents

% Start cross-guided k-means
9. Iterate m times or until convergence
10. Project each target centroid onto pivot vocabulary
11. Create cross domain similarity graph Gx

over Cs and Ct

12. Compute maximum bipartite matching over Gx

13. Iterate over k target centroids Ct

14. Update centroid using cross domain rule
15. Assign each document in Dt to nearest centroid
16. Return k target centroids

Figure 2. Cross-Guided Clustering algorithm

low divergence, no significant match can be discovered with
the corresponding source centroid using the cross domain
similarity measure. On the other hand, if the divergence of
the initial target clusters reach their minima before they
are aligned with the source centroids, the target clusters
may settle down to a specific facet of the target domain,
which again may not be similar to the source partitioning.
In view of this, in the initial step, the algorithm executes a
few iterations of k-means, which are enough for patterns to
emerge in the target clusters, but do not allow the clusters to
settle down. Each cross-guided k-means iteration is shown
in steps 10-15.

The cross domain similarity computation involves estab-
lishing a pivot vocabulary between domains (steps 1-2) and
projecting the centroids on the pivot vocabulary. The pro-
jection needs to be done only once for the source centroids
(step 4), but needs to be repeated for every target centroid
after every re-estimation step (step 10). We elaborate on
these steps in the next section.

V. CROSS DOMAIN SIMILARITY

The success of the cross-guided clustering approach often
depends on the design of the cross-domain distance mea-
sure dx(Ct

i , C
s
j ) between a target and a source centroid,

since the source and target centroids are from different
datasets. Typically, for documents, distance is defined as
d(Ct

i , C
s
j ) = 1 − cosine(Ct

i , C
s
j ), where cosine(v1, v2)



captures the cosine similarity of two weight vectors:

cosine(v1, v2) =
∑
ai

wt(v1, ai)× wt(v2, ai)

where ai’s are the dimensions of the two vectors. When
comparing two centroid vectors, this compares weights over
words that are lexically the same. However, two different
problems arise when the centroids are from two datasets
from different domains having different vocabularies. First,
words that are lexically the same may not have the same
meaning in two domains. Secondly, the two domains may
have synonyms that are not lexically similar, which will
be ignored in the above similarity computation. This is a
challenging problem in itself and has been the focus of
some research [13]. In this section, we discuss how similarity
measures can be adapted to handle these two problems.

Pivot Vocabulary We first address the problem of lexically
identical words not being semantically identical in the two
domains. We construct the pivot vocabulary V p, consisting
of the words from the two vocabularies that are lexically
identical. For each word v in the pivot vocabulary, we
construct their pivot weights pw(v) that captures its semantic
similarity in the two domains as follows.

To compute pw(v), we assume that a word is semantically
similar across the two domains if it is used in similar con-
texts. For both the source and target domains, we construct
the word-word context matrix Cxt. Cxt(v, v′) counts the
number of times words v and v′ occur within m tokens
of each other over all documents in the domain. We use
standard TF-IDF weighting to assign a weight to each entry
in the context matrix. The context vector Cxt(v) for any
word v is the row corresponding to v in the matrix Cxt,
and captures the aggregated context of v in the particular
domain. The pivot weight pw(v) is then calculated as the
cosine similarity of its two context vectors, Cxts(v) from
source and Cxtt(v) from target:

pw(v) = β + (1− β)cosine(Cxts(v), Cxtt(v))

where β provides smoothing over sparsity and noise in the
data. The similarity between a source and target centroid
can now be computed using a modified version of cosine
similarity that takes the pivot weights into account:

simx(C̄t
i , C̄

s
j ) =

∑
v∈V p

wt(v, C̄t
i ) wt(v, C̄s

j ) pw(v)

where wt(v, C̄t
i ) captures the weight of pivot word v in the

ith target centroid C̄t
i .

Projection onto Pivot Vocabulary The other problem with
comparing centroid vectors over different vocabularies is that
words not in the shared vocabulary are completely ignored.
For example, if a context center agent is referred to an
‘agent’ in one domain, and as a ‘rep’ in another, these
do not contribute to any cosine similarity computation. To

address this, we take a projection approach, where weights
of non-pivot words (word not in V p), instead of being lost,
are distributed over the weights of relevant pivot words. To
achieve this, we construct a projection matrix Proj(v, v′)
for each domain from the context matrix Cxt, such that
the columns correspond to pivot words from V p and rows
correspond non-pivot words. For any non pivot word v,
Proj(v, vp) defines how its weight is distributed over pivot
word vp. The projected weight wtp(v, C̄t

i ) for pivot word
v in target centroid C̄t

i is the augmented weight after
projecting on v weights of all relevant non pivot words in
the target vocabulary V t:

wtp(v, C̄t
i ) = wt(v, C̄t

i ) +
∑

v′∈V t−V p

Projt(v′, v)

The projected pivot weights can similarly be computed for
the source domain using its own projection matrix Projs.
Cross-domain similarity of centroids is then computed using
projected weights of pivot words in the two domains.

VI. ANALYSIS OF CROSS-GUIDED CLUSTERING

In this section we present an analysis of cross-guided
clustering, denoted as CGC for brevity. If we have the gold
standard target cluster labels available, can we estimate how
badly or how well cross-guided clustering will perform on
that target dataset for a given source? Before heading into
the experimental section, here we attempt to understand the
favorable conditions for CGC and answer this question, so
that we can interpret and explain the performance of CGC
on various datasets.

First, consider traditional k-means clustering on the target,
disregarding the source. The k gold standard target centroids
C̄t are found from all the items assigned to their true
clusters. Then, for each target item ti, we consider its
similarity sim(ti, C̄t

i ) to each centroid C̄t
i ; i = 1 . . . k. Given

these k similarities, the more unambiguously ti can be
assigned to its ‘true’ centroid C̄t

∗(ti), the more easily ti is
‘clusterable’. Entropy over the k choices can be used to
measure clusterability of ti. We use a simpler measure, that
does not require a probability distribution, but considers how
similar ti is to the nearest ‘non-true’ centroid. We define the
clusterability (denoted Cab) of ti given the centroids to be

Cab(ti|Ct) = sim(ti, C̄t
∗(ti))

−max{C̄t
j
6=C̄t
∗(ti)}sim(ti, C̄t

j)

The clusterability of the entire target dataset T is obtained
by averaging over the clusterability of the individual items:

Cab(T |C̄t) =
∑
{ti∈T}

Cab(ti|C̄t)/|T | (4)

Note that this is an ‘upper bound’ on target clusterability
using k-means, since this is conditioned on correct discovery
of the target centroids. Also, the range of Cab(T |C̄t) is
[−1.0,+1.0]. The value 1.0 is achieved for a ‘perfectly



Figure 3. (a) Favorable and (b,c) unfavorable sources for cross-guided
clustering

clusterable’ dataset, where every data item has similarity 1.0
to its true centroid, and similarity 0.0 to all other centroids.
Similarly, for a ‘perfectly unclusterable’ dataset, where every
data item has similarity 0.0 to its true centroid and similarity
1.0 to some other centroid, the clusterability value will be
−1.0.

Now consider the source centroids and their impact on
cross-guided clustering. We have mentioned that a source
is helpful when the target centroids C̄t are matched by the
source centroids C̄s representing the supervised partitions.
We first illustrate why imperfect matches are undesirable
for CGC and then propose a measure for ‘matchability’
Mab(C̄t, C̄s) of a source-target pair. In Figure 3, we illus-
trate different types of mappings that are possible between
source and target centroids. In Figure 3(a), both target cen-
troids are matched unambiguously by the source centroids.
This is when the source is beneficial, since the source
centroids provide supervision for the corresponding target
centroids only, without influencing any other target centroid.
Figure 3(b), illustrates the first problematic scenario. Two
different target centroids are similar to the same source cen-
troid. As a result, target data items from these two different
true target clusters may gravitate toward each other and
end up in the same computed target cluster. This adversely
affects ‘source-side matchability’ Mab(C̄s|C̄t). Similarly,
Figure 3(c) illustrates the second problematic scenario. Here,
a single target centroid is similar to two different source
centroids. As a result, the target data items for which this is
the true centroid, may be pulled away from each other end up
in different computed target clusters. This adversely affects
‘target-side matchability’ Mab(C̄t|C̄s). In any dataset, the
overall matchability of a source-target pair is the net effect of
these target-side and source-side ambiguities, and determines
whether the source will be helpful for clustering the target.

We now propose one possible measure for matchability.
Note that other measures such as joint-entropy may also
be possible to use. We first measure the matchability of
a single target centroid C̄t

i using an approach similar to
clusterability that does not require a probability distribution.
We consider its cross-domain similarity simx(C̄t

i , C̄
s
j ) to

each source centroid C̄s
j , and then identify the most similar

source centroid C̄s
∗(C̄

t
i ) = max{C̄s

j
}sim

x(C̄t
i , C̄

s
j ). This

similarity is compared to that with the next closest source

centroid:

Mab(C̄t
i |C̄s) = simx(C̄t

i , C̄
s
∗(C̄

t
i ))

−max{C̄s
j
6=C̄s
∗(C̄

t
i
)}sim(C̄t

i , C̄
s
j )

The total target-side matchability is obtained by
averaging over the target centroids: Mab(C̄t|C̄s) =∑

C̄t
i
Mab(C̄t

i |C̄s)/|Ct|. The source-side matchability
Mab(C̄s

i |C̄t) of each source centroid is defined analogously
by considering the difference in similarity to its closest
target centroid and the next closest target centroid. The total
source-side matchability Mab(C̄s|C̄t) is again obtained
by averaging over the all source centroids. Finally, the
matchability Mab(C̄t, C̄t) of a source-target pair is
the average of source-side matchability and target-side
matchability:

Mab(C̄t, C̄s) = (Mab(C̄t|C̄s) +Mab(C̄s|C̄t))/2

Again, this is an ‘upper bound’ on how beneficial a particular
source can be for clustering a target dataset, since this is
conditioned on the discovery of the true target centroids.

Observe, that unlike for target clusterability, for matcha-
bility we considered the most similar source centroid for
a target centroid, and vice versa, instead of the ‘true’
matching centroid. The reason is that for clusterability, it
is not enough for a target data item to unambiguously select
any gold standard centroid - it has to choose its ‘true’
centroid. For matchability, there is no such requirement.
It is sufficient for each target centroid to match up with
any source centroid unambiguously to obtain supervision
for helping target clustering. One consequence of this is that
matchability scores cannot be negative and lie in the range
[0.0, 1.0].

Finally, the cross domain clusterability of a target dataset,
given a set of source centroids, is a linear combination of
clusterability of the target alone and the matchability of the
source and the target, following Equation (2) and using the
same trade-off parameter α:

Cab(T |Cs, Ct) = αCab(T |Ct)+(1−α)Mab(Cs, Ct) (5)

Now, given a target dataset with its gold standard cluster
labels, and a source partitioning, we can use Equation (4)
and Equation (5) to estimate whether cross-guided clustering
using this source can help result in a better clustering of
the target, compared to traditional k-means clustering. They
also enable us to perform controlled experiments by creating
datasets with varying target clusterability and source-target
matchability and evaluate how CGC actually performs under
different source-target combinations. We next move on to the
experimental section where we perform such experiments in
a systematic way.



VII. EXPERIMENTS

In this section, we present empirical results that show
the effectiveness of our cross-guided clustering approach
(CGC). First, we describe our datasets, and then investigate
the performance of CGC over varying levels of relatedness
between source and target domains and over varying param-
eter settings.

Experimental Setup: For our experiments, we created
source-target pairs from bench-mark text categorization
datasets. For a target data collection with k class labels, our
goal is to partition the documents into k clusters, such that
clusters correspond to class labels. In other words, a pair
of documents should be in the same cluster if and only if
they are given the same class label by a human supervisor.
Traditional methods are not expected to generate such target
clusters that correspond with class labels. But, this is the
clustering that a human user would create given this dataset.
Accordingly, we want CGC to be able to recreate this
target clustering when provided with a related partitioning
(according to class labels) from a different dataset.

We evaluate clustering quality by considering the cor-
rectness of clustering decisions over all document pairs.
We report the standard F1 measure and Adjusted Rand
Index (ARI) over the pairwise clustering decisions. The F1
measure is the harmonic mean of precision and recall over
pairwise decisions. The standard Rand Index with respect to
a gold standard clustering is defined as (a+b)/(a+b+c+d)
where a is the number of true positive pairs, b is the number
of true negative pairs, c is the number of false positive pairs
and d is the number of false negative pairs. The Adjusted
Rand Index improves on this by accounting for chance
correlations and is defined as 2(ab− cd)/((a+ d)(d+ b) +
(a+ c)(c+ b)).

DataSets: We created meaningful source-target pairs from
three benchmark text categorization datasets - 20 news-
groups1 (20NG), Reuters Corpus Volume 1-v2 (RCV1)[17]
and Dmoz from the TechTC repository2 [18].

We have made the actual processed datasets and their
descriptions available online3. Here we briefly summarize
their creation process and content. For each dataset, using
domain knowledge, we first grouped the available categories
(with sufficient number of documents) according to semantic
or topical closeness. Then we created the source and target
datasets by picking groups with at least two categories and
then randomly selecting one category from the group for the
source and another for the target. For all categories selected
for a source or target dataset, we included all documents
from those categories to the dataset.

We created the first dataset from 20NG. We chose 5
categories, namely graphics, autos, sci.crypt, politics.misc,

1http://people.csail.mit.edu/jrennie/20Newsgroups/
2http://techtc.cs.technion.ac.il/
3http://www.ibhattacharya.net/DATA/cgc.html

and religion.misc for the target collection (5000 docu-
ments), and corresponding classes xwindows, motorcycles,
electronics, politics.mideast and atheism for the source
(5000 documents).

For RCV1, of the three available facets, we used
Industries (RCV1Ind) and Topics (RCV1Top). We
did not find enough meaningful category groups for
the Regions facet. For RCV1Top, we included 5
categories legal proc, external markets and exports,
inflation prices and price indices, weather conditions

and all matters relating to religion in the target
(991 documents) and 5 corresponding categories
criminal law, domestic markets sales and imports,
levels of personal spending income and debt, pollution,
and people in the news profiles politicians in the source
(1702 documents). We created a source-target combination
in similar way for RCV1Ind with a total of 12 categories in
both source (1336 documents) and target (1076 documents).

For Dmoz, since a hierarchical organization of the cate-
gories is available, we picked 14 high-level categories and
selected two categories from the subtree of each of those,
and added one to the source and the other to the target. For
example, we added Arts/Music/Styles By Decade/1980s

to our source and Arts/Music/Bands and Artists/U to
the target from the Arts category. We ended up with 1533
documents in the target and 1384 in the source.

We pre-processed all documents in a standard way using
word stemming, and pruning stop-words and infrequent
words (occurring less than 5 times in the dataset).

Baselines: As the first baseline, we have the traditional
k-means algorithm (KM) that considers only the target
dataset for clustering it. Since this baseline is unaware of
the source documents, we compare with a second baseline
(KM-ASD) that (A)dds all the (S)ource (D)ocuments to the
target and then performs traditional k-means for clustering
them. However, we evaluate this by considering the pair-
wise decisions only over documents from the target dataset
— the source documents are ignored for evaluation.

Since clustering quality for both baseline k-means and
CGC depends on initial centroids, in each experimental run,
the compared algorithms were seeded with the same initial
centroids. All reported performances are averages over 30
runs with random initializations. As our default parameter
values, we set α = 0.5, initial number of target k-means
iterations to 5, and maximum number of iterations to 25.
Also, we set the number of clusters for both baselines and
CGC as the actual number of target clusters in the data.

CGC vs Baselines: In our first experiment, we compare
CGC with default parameters against KM and KM-ASD.
The results are plotted in Table I. We include the cluster-
ability(Cab) values for all datasets both for k-means and
CGC as a confirmation that the intuitive relatedness of the
source and target clusters is actually validated by the data,



Clusterability F1 ARI
KM KM-ASD CGC KM KM-ASD CGC KM KM-ASD CGC

20NG 0.054 0.056 0.129 0.443 0.408 0.501 0.292 0.251 0.373
Dmoz 0.127 0.131 0.200 0.419 0.416 0.476 0.368 0.364 0.433
RCV1Top 0.158 0.166 0.294 0.507 0.514 0.756 0.359 0.353 0.669
RCV1Ind 0.114 0.116 0.212 0.205 0.221 0.362 0.120 0.137 0.299

Table I
COMPARISON OF KM, KM-ASD AND CGC OVER 4 DATASETS USING CLUSTERABILITY, F1 AND ARI.

and that CGC is expected to improve target clustering for
these datasets. We can see that CGC significantly improves
performance over both baselines in all four datasets accord-
ing to both F1 and ARI measures. The CGC improvements
are statistically significant in all cases over 30 runs with
99% confidence using the paired t-test. Noticeably, the Cab
measure is generally able to mirror the actual performances.
The actual gains using CGC in terms of F1 and ARI are
greater when estimated gains according to Cab are higher.
The improvement over KM proves that CGC is able to au-
tomatically discover relevant supervision from the source to
improve target clustering. The improvement over KM-ASD
confirms that the improvement is due to the supervision (the
cluster/partition labels) available in the source, and not the
source documents themselves. Notice that KM-ASD shows
a small improvement over KM for RCV1Ind suggesting that
more documents can help sometimes. However, on the other
hand, performance of KM-ASD drops below that of KM for
other datasets.

For the rest of our experiments, we only report clusterabil-
ity(Cab) and F1 for KM and CGC. The results for KM-ASD
and with ARI have similar trends.

Varying α: Recall that CGC involves a parameter α that
trades off target divergence with cross-domain divergence.
In all experiments so far, α was held fixed at 0.5. Next, we
investigate the effect of α on CGC. In Figure 4(a) and (b),
we plot CGC performance using F1 and Cab (average of
30 runs) against KM over varying α for the RCV1Ind and
20NG datasets respectively. Expectedly, CGC is identical to
baseline k-means at α = 1.0. CGC performance improves
with decreasing α until a threshold (0.5 for RCV1Ind and
0.6 for 20NG) and then tapers off once maximal benefit has
been extracted from the source.

Varying Relevance of Source: In the first experiment, each
target cluster was provided with a corresponding partition
in the source. In our next experiment, we investigate how
performance of CGC changes when provided with a less
relevant source and different numbers of source partitions.
In the following, we use m/n to mean that m out of n
partitions in the source are relevant for the target. Keep-
ing 4 20NG categories in the target (religion, graphics,
autos, hockey), we start with the most relevant source
(4/4) containing 4 relevant categories (atheism, xwindows,

(a)

(b)

Figure 4. Perf. vs α for (a) RCV1Ind and (b) 20NG

motorcycles, baseball). Then we reduce source relevance in 3
different ways. The results for all 3 are recorded in Table II.
All performances are averaged over 10 runs.
In the first setting, we replace the relevant source partitions
one by one with one of the remaining partitions in 20NG. For
example, we replace xwindows with sci.space, motorcycles

with sci.med etc. We can see that, as expected, performance
of CGC gradually drops as relevant source partitions are
removed, since fewer target clusters are able to find relevant
supervision from the source. The Cab measure also suggests
similar degradation of performance.
Note that in the first setting, we still provided a source
which had the same number of partitions as the target. In the



Clusterability F1
Source KM CGC KM CGC

Replacing source partitions
4/4 0.072 0.283 0.637 0.824
3/4 0.072 0.215 0.653 0.735
2/4 0.072 0.201 0.626 0.706

Adding source partitions
2/4 0.072 0.201 0.626 0.706
2/5 0.072 0.185 0.623 0.685
2/6 0.072 0.170 0.650 0.681
2/8 0.072 0.151 0.628 0.692

Removing source partitions
4/4 0.072 0.283 0.637 0.824
3/3 0.072 0.275 0.626 0.724
2/2 0.072 0.257 0.602 0.644
1/1 0.072 0.285 0.620 0.620

Table II
PERF. OF KM AND CGC ON 20NG OVER VARYING RELEVANCE OF

SOURCE. STATISTICALLY SIGNIFICANT IMPROVEMENTS ARE IN BOLD.

second setting, we keep 2 related partitions in source, and
gradually introduce more partitions from those remaining
in 20NG, so that now the number of source partitions is
more than the number of target clusters. With 2, 3, 4 and
6 new partitions added to 2 original relevant partitions,
we can see that performance of CGC remains reasonably
stable, as also suggested by Cab. This is reassuring since it
suggests that when a host of source partitions are provided
to CGC, it is able to seek out the relevant partitions in the
source, disregarding the remaining ones. The small drop in
performance is explained by the fact that the newly added
partitions were not completely irrelevant to the true target
clusters. This was revealed in the clusterability analysis.
For example, it turned out that religion.misc is somewhat
similar to politics.guns in addition to its intended source
partition atheism, and comp.graphics has similarities to
both sci.electronics and comp.hardware. These one-to-
many mappings are weak, and they hurt CGC Cab to a small
extent.
In the third setting, we gradually remove relevant partitions
from the source, so that CGC is left with fewer partitions in
the source that in the target. We can see that actual perfor-
mance gradually falls away expectedly as source partitions
are removed and gets close to KM performance.

The above experiments clearly show the ability of CGC to
seek out relevant supervision when provided with a source
partition with arbitrary number of partitions and improve
clustering performance over traditional k-means. Note that
due to different initializations, the avg KM performance is
different across experiments, but the improvements using
CGC (with the same initializations) are statistically signifi-
cant where pointed out.

A natural consequence of the above sequence of ex-
periments is to wonder if a source can adversely affect

Figure 5. CGC vs α and KM for RCV1IndBad

target clustering. With significant effort, and using our
clusterability measure, we were able to create a source
target combination (RCV1IndBad) from RCV1Ind by cre-
ating many-to-one and one-to-many correspondences be-
tween source (6 categories, 378 documents) and target (6
categories, 252 documents) datasets. For example, corre-
sponding to Television and Radio in target, we added
Printing and Publishing and Newspaper Publishing in
source. In Figure 5, we plot CGC and KM performance
using F1 versus α for RCV1IndBad. We can see that
CGC performance gradually drops below that of KM as α
increases. In summary, this demonstrates that it is indeed
possible to misguide CGC by deliberately creating an adver-
sarial source for a target dataset. But, in practice, a source
will not be provided by an adversary, but by the same user
who desires to guide a target clustering in a specific way.

Pivot Weights: Finally, we evaluate the benefits that come
from pivot probabilities and the projection approach. On
comparing cross clustering with (CGCP) and without pivot
weights (CGC), we found significant differences in terms of
clusterability(Cab) for three of our four datasets. (Table III).
However, there were no significant differences in terms of
F1. The use of projection also did not lead to significant
change in CGC performance. As an artifact of our evaluation
process, our source and target datasets contain documents
from the same domains, as a result of which their vocabu-
laries are not significantly different. In settings where less
words are shared across datasets and shared words also differ
in usage, we expect to obtain more significant benefits using
our cross-domain similarity measure.

Noticeably, though the actual cross domain similarity
values changed significantly from the use of pivot weights
and projection on the pivot vocabulary for all datasets, the
impact on clusterability was not as much. The intuition that
we obtained from our experiments is that change in cross
domain similarity values do not necessarily result in change
in ambiguities for source-target mappings, which is what
impacts clusterability.



KM CGC CGCP
20NG 0.054 0.118 0.143
RCV1Ind 0.114 0.212 0.211
RCV1Top 0.157 0.263 0.294
Dmoz 0.127 0.167 0.200

Table III
EFFECT OF PIVOT WEIGHTS ON CLUSTERABILITY

Summary of Experiments: To summarize, we have seen
that CGC improves clustering performance over traditional
k-means baselines significantly over multiple bench-mark
datasets. Our controlled experiments, where we systemati-
cally change the nature and number of the source partitions,
demonstrate that CGC is robust, and can selectively seek out
relevant source partitions and improve benefit from them,
while largely ignoring unrelated partitions. Though CGC
involves a tunable parameter α, and setting α optimally
remains an issue, the gains, even with its default value, are
quite significant.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented cross-guided clustering
that transfers relevant supervision across datasets, potentially
from different domains, to make clusters meaningful and
useful for human users. This is achieved by trading off intrin-
sic goodness of clusters for alignment across domains. We
have presented a cross-domain similarity measure for dis-
covering similarity of concepts across domains with different
vocabularies. Our experiments on real-world benchmark text
datasets show that cross-guided clustering consistently and
significantly outperforms traditional clustering over a variety
of settings. In future, we will explore a richer language
driven cross-domain similarity measure, and the use of
multiple source domains simultaneously.
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