
Building Re-usable Dictionary Repositories for Real-world
Text Mining

Shantanu Godbole
IBM Research - India

shgodbol@in.ibm.com

Indrajit Bhattacharya
∗

Indian Institute of Science
indrajit@csa.iisc.ernet.in

Ajay Gupta
IBM Research - India

ajaygupta@in.ibm.com

Ashish Verma
IBM Research - India

vashish@in.ibm.com

ABSTRACT
Text mining, though still a nascent industry, has been

growing quickly along with the awareness of the importance
of unstructured data in business analytics, customer reten-
tion and extension, social media, and legal applications.
There has been a recent increase in the number of com-
mercial text mining product and service offerings, but suc-
cessful or wide-spread deployments are rare, mainly due to
a dependence on the expertise and skill of practitioners. Ac-
cordingly, there is a growing need for re-usable repositories
for text mining. In this paper, we focus on dictionary-based
text mining and its role in enabling practitioners in under-
standing and analyzing large text datasets. We motivate
and define the problem of exploratory dictionary construc-
tion for capturing concepts of interest, and propose a frame-
work for efficient construction, tuning, and re-use of these
dictionaries across datasets. The construction framework of-
fers a range of interaction modes to the user to quickly build
concept dictionaries over large datasets. We also show how
to adapt one or more dictionaries across domains and tasks,
thereby enabling reuse of knowledge and effort in industrial
practice. We present results and case studies on real-life
CRM analytics datasets, where such repositories and tool-
ing significantly cut down practitioner time and effort for
dictionary-based text mining.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscella-

neous; J.7 [Computers in Other Systems]:

General Terms
Standardization

∗Work done while at IBM Research - India

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’10, October 26–30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

1. INTRODUCTION
Text Mining has been gaining ground as an important

data mining application area in recent years. The text min-
ing industry is still small [11] but is growing1 quickly, along
with the awareness of business insights hidden in unstruc-
tured data. The aim of text mining is to marshal huge
amounts of unstructured data available in enterprises and
externally, as on the internet, and use it to gain insights
to solve real-world problems. Some typical industrial text
mining applications [14, 1, 5] include 1) enhancing customer
product and service experience by tracking what is being
written in emails, surveys, and in social media, 2) enhancing
churn and other predictive analytics models by leveraging
features extracted from textual data for customer retention
and extension, and 3) compliance monitoring applications
in legal domains (e-discovery) and call centers (voice and
rich media). A number of text mining product and service
offerings from big and small companies exist that cite suc-
cessful case studies. However, widespread adaptation and
deployments are yet to happen.

In this paper we focus on dictionary-based text mining.
Dictionary based systems are very common in information
extraction[13], entity annotation[4], classification[5], and link
analysis tasks. While statistical and model-based techniques
thrive in academic research in text mining and NLP, real-
world industrial products and services prefer tuned linguis-
tic rule-sets and pre-packaged dictionary-based components,
primarily because of the variance in the skill levels of end
users. These components make text processing easily ac-
cessible, and facilitate browsing and understanding corpora.
Practically, dictionaries are used to annotate (or ‘tag’) con-
cepts, such as specific products or issues. Identified con-
cepts can then be stored in entity databases for later use,
or ingested by downstage analytical components. For exam-
ple, correlation analysis can find insights such as problems
strongly correlated with specific products, as in customer
relationship management (CRM) applications.

On the flip side, constructing dictionaries has been called
a practitioner’s art [14], and requires experience and a lot
of trial and error. Hand-tuning for measures such as preci-
sion and recall[1] is still the state of the art, as evidenced
in the MUC conference series. The practitioner’s domain
knowledge becomes particularly important for tagging ab-

1Annual text mining industry conference http://www.
textanalyticsnews.com/text-mining-conference/



stract concepts. Wordnet2 is a popular resource that orga-
nizes general purpose concepts and entities for the English
language. Similar Wordnets, customized and specific for var-
ious domains, would be invaluable for text mining. But it
took years of manual effort to construct the English language
WordNet. In this paper, we look at how tooling and automa-
tion can help text mining practitioners construct, use and
evolve their ‘private Wordnets’, in the form of dictionary
repositories.

While packaged dictionaries and taxonomies are available
in many text mining products, the problem of building,
adapting, and re-using domain-specific dictionaries remains
a technical challenge requiring more interactive tooling than
is currently available. When a perfectly constructed dictio-
nary for a concept is readily available in a package, existing
tools allow quick deployment. However, perfect dictionaries
rarely exist for domain specific concepts. Accordingly, either
existing dictionaries for related concepts need to be adapted,
or completely new dictionaries need to be constructed for
this new task. The first task that we focus on is dictionary
construction. In typical text mining workflows, either do-
main experts know the set of dictionaries to create for the
text mining task at hand, or they engage in a concept explo-
ration and discovery phase[1]. Such concept discovery uses
clustering (or some variant) to find coherent concepts in the
text corpus and the experts then review the clusters and
make dictionaries, rule-sets, classifiers starting from them.

The second task is dictionary adaptation across tasks, and
possibly domains. While research in transfer learning [15]
and domain adaptation [3] has been maturing in the past
few years, direct application in real-world settings has only
begun. Specifically, we are faced with the challenge of be-
ing able to leverage knowledge or supervision from earlier
text mining tasks in new domains where exploration and
discovery may be required. We want to develop a standard
framework and methodology that practitioners can use in
real commercial engagements for significant savings in time,
effort, and cost.

The rest of our paper is structured as follows. We de-
scribe research challenges around dictionary building and
re-use in Sec. 2, and review some related research work in
Sec. 3. In Sec. 4, we present easy-to-use dictionary construc-

tion and adaption tools for practitioners providing a range of
interaction and supervision modes. In Sec. 5, we show how
to enable practitioners to re-use earlier experience and su-

pervision in building dictionaries and quickly adapt them to
newer tasks at hand. We apply the proposed techniques and
show results on real datasets from voice of customer CRM
analytics in Sec. 6. We recount our experiences as data min-
ing researchers helping build commercial text mining service
offerings in Sec. 7, and conclude in Sec. 8.

2. CHALLENGES
In this section, we set the context for our work around dic-

tionary repositories. We discuss some novel research chal-
lenges arising in various real-world dictionary-based text
mining tasks around interactively building, adapting, and re-
using dictionaries. We then address some of these research
challenges subsequently with our proposed framework.

2http://wordnet.princeton.edu/

2.1 Building dictionaries
Text mining practitioners have long recognized the ben-

efits and tunability of rule-based data mining over com-
plex statistical models [4] for information extraction, named-
entity recognition, and text classification [7, 5]. High perfor-
mance is practically achieved by carefully handcrafted rules
and dictionaries perfected over time. In the light of these
observations most text mining software products come with
pre-packaged dictionaries, rule-sets, and taxonomies for typ-
ical application areas along with the ability to refine and en-
rich these pre-packaged components. We are familiar with
the dictionary and rule-based extraction/annotation in com-
mercial products from all leading text analytics vendors,
as well as other freely available workbenches like GATE3,
Rapidminer4. However there are significant opportunities
in improving their ease of use and range of supported oper-
ations for dictionary construction, modification, and re-use.

It has been recognized that verification is an easier text
mining task than specification[1] for users. Currently, con-
structing dictionaries is clearly a tedious task of specifica-
tion. How can we best assist the practitioner in construct-
ing these dictionaries, in various scenarios where he may
or may not be aware about the domain concepts ahead of
time? This is an ‘enabling the human in the loop’ challenge
in the context of dictionary construction. What are the su-
pervision (or semi supervision) models for these scenarios?
For ‘uninformed’ users, can interactive modes of supervision
work better than offline supervision? We pose the dictio-
nary construction task as a ranking problem. To enable the
user to provide feedback on a ranking with multiple seeds,
how should the ranking be ‘explained’ to the user? Usu-
ally several concept dictionaries need to be constructed for
a dataset. Are there benefits to constructing them simul-
taneously, rather than sequentially? We refer to all these
questions collectively as the interaction challenge for dictio-
nary construction.

2.2 Re-using dictionaries
An area of long standing concern for practitioners has

been the ramp-up time for new text mining tasks and en-
gagements. Reducing this time as much as possible is one of
the driving factors behind pre-packaged components shipped
with commercial products. Such components are often in the
form of pre-built sets of dictionaries (among other compo-
nents) standardized across tasks and industries like customer
satisfaction (CSAT) analysis or opinion mining, and tele-
com, finance, or insurance respectively. These dictionaries,
while useful, tend to prefer precision over recall and require
significant manual customization before they can capture
special characteristics of the new data at hand. Re-using
dictionaries thus emerges as the second main challenge.

Allowing practitioners and domain experts to re-use their
own or others’ effort in past tasks and engagements can sig-
nificantly speed up text mining. Recent advances in transfer
learning[15] assume significance for this problem. Domain
adaptation is another relatively recent related research area
[3, 8] that considers the problem of reuse across domains.
The recent framework of cross-guided clustering [2] aims at
allowing re-use where supervision from earlier tasks is used
to guide unsupervised concept discovery in newer tasks. Ad-

3http://gate.ac.uk/
4http://rapid-i.com/



ditional problems arise for dictionary adaptation when a sin-
gle coherent concept in one dataset needs to be split up into
multiple concepts in a new dataset. Vocabulary differences
also lead to adaptation challenges. A dictionary may be
relevant for a new domain even when none of the dictio-
nary words exist in the new vocabulary, as for a Car Models
dictionary when transferred from one manufacturer to an-
other. How can a dictionary ontology be adapted for a new
domain? What are the best interaction models for dictio-
nary adaptation? These are some research challenges that
arise in the dictionary adaptation and reuse problem, some
of which we address in our framework.

3. RELATED WORK
There has been some work in the areas of dictionary build-

ing[9] in literature and in practice. A study of machine learn-
ing methods for information extraction tasks can be found in
[4]. Bootstrapping has been applied to automatic dictionary
building for information extraction [6, 13], where seed words
are used to infer common extraction patterns. These pat-
terns in turn help find words and phrases similar to the seeds
and these two steps iterate and boost each other. There has
also been work on unsupervised grouping together of word
senses in a corpus [12]. These approaches are similar to the
context based synonym finding we present in Sec. 4. Google
Sets5 is also related to dictionary building, but makes use of
structured tables, possibly in addition to unstructured text.
Our work differs in the interaction mechanisms and explicit
feedback semantics.

Commercial products and free text mining frameworks en-
able dictionary-based text mining but simply allow manual
dictionary construction. They rely on the human expert for
the entire dictionary construction and adaption steps, and
are not geared to handle noise and any corpus specific char-
acteristics. In contrast, we present a complete framework
for interactively building dictionaries from scratch and also
adapting and re-using them.

The research area of transfer learning[15] is motivated by
the need to transfer various types of supervision from one
learning task to another. Improving accuracy of supervised
classifiers by learning on data in a different domain [17, 16] is
the most common form of transfer learning. Domain adap-
tation[3] is a specific setting where information extraction
tasks like named entity recognition are adapted across do-
mains using a pivot vocabulary that remains common across
the domains. Another example is sentiment classifiers being
adapted from the movies domain to the shopping domain[8]
in online reviews. All these allude to scenarios where the
earlier and the current tasks are both supervised in nature.
Text mining engagements on the other hand are likely to
be unsupervised or at best semi-supervised in nature, with
concept discovery forming an important initial phase of the
process where the practitioner determines what text mining
components (dictionaries, rule bases, classifiers) are needed.
Cross-guided clustering [2] (CGC) aims at allowing re-use
where supervision from earlier tasks is used to guide unsu-
pervised concept discovery in newer tasks. CGC is intended
to be used when a set of supervised source partitioning (dic-
tionaries) guides exploratory clustering in a target dataset.
Manual intervention is needed for CGC in real-world settings
– the human expert incorporates supervision by selecting

5http://labs.google.com/sets

dictionaries at the right level of granularity as source par-
titions. We will see examples of such supervision in Sec. 6.
Mihalkova et al [10] have considered the problem of transfer
across relational domains with minimal target data. This
work is also relevant for multi dictionary adaptation across
datasets.

We present real-life practical applications following the
spirit of transfer learning for the dictionary-based text min-
ing setting. Our work emerges at the junction of dictionary
building and transfer learning in real-world commercial text
mining settings, with a focus on practical interaction mod-
els.

4. BUILDING DICTIONARIES
In this section, we focus on the task of building concept

dictionaries for annotating a collection of documents from
a particular domain. We first formally define the task of
dictionary construction, and propose various approaches for
it using different types of supervision from the user. Note
that we do not look to automate the task of dictionary con-
struction. We believe that manual intervention is critical
for the task. Our goal in this paper is to provide tools that
facilitate a user in the task of dictionary construction.

We define a dictionary D = Dict(C, X) as a set of words
that refer to or describe a semantic concept C in a docu-
ment collection X. We will also use the term ‘synonyms’
loosely to mean related words about C. Examples of con-
cepts we would like to capture are mentions of problematic
car-parts in agent notes in an automobile company’s call
center, or mentions of agent attributes like expertise or ac-
cent in customer surveys of a telecom company’s helpdesk.
Note that named entity lists like product parts, subscrip-
tion plans, dealer names, etc. are naturally seen as concept
dictionaries. The dictionary construction problem is then
defined as:

Given a semantic concept C and a document collection X

using a vocabulary V , return a ranking over words w ∈ V

such that words that refer to concept C appear higher in the

ranking than words that do not refer to C.

A user inspects the ranking that is returned and decides
which words actually refer to C and should be included in
Dict(C, X) and which words to discard. The general as-
sumption is that ‘critiquing is easier than constructing’ —
the user may not be able to create a dictionary from scratch,
but when he recognizes a word from the dictionary when he
sees it. Providing him with a good ranking according to C

makes the dictionary construction task significantly easier
for him since he needs to inspect a smaller set of words from
the vocabulary. To aid the user in recognizing a dictionary
word, some evidence explaining the inclusion of a word in the
ranking is often useful. This is similar to providing snippets
alongside with search results. We will return to this issue
later in the section. In general, bi-grams and longer phrases
may also be included in a dictionary, but in our experience
3-grams are usually sufficient for most scenarios. In the rest
of this paper, we will use the term ‘words’ to refer to all
these n-grams and phrases.

A critical issue in dictionary construction is specifying a
semantic concept C. For general concepts in the English
language, this may be done by referring to a node in the
Wordnet hierarchy, and the intended dictionary would con-
sist of all words in the synset corresponding to that node.



Unfortunately, the vocabulary of Wordnet is restricted to
general English words, and it is not useful for specialized
concepts and words that arise in domain specific uses. In
section Sec. 5, we discuss how specialized semantic struc-
tures or repositories may be constructed gradually over time.
In this section, we look at approaches to specify concepts in
the absence of such a repository, or to specify new concepts
not currently contained in an existing repository. For each
of the different supervision models, we discuss algorithms
for dictionary construction over document collections.

4.1 Single Seed Word
In the simplest model for concept specification, the user

provides a single word ws as an illustrative example of words
corresponding to a concept C. For an automobile related
dataset, the user may refer to the Car Parts concept using
the word ‘engine’. We will call ws a seed word for C. The
dictionary construction task then becomes to rank words in
V according to ‘semantic similarity’ to the seed word ws.

The two primary tasks that need to be addressed to solve
this problem are defining the representation of a word w ∈ V

and a similarity measure sim(w1, w2) between two words w1

and w2 based on their representation. Determining seman-
tic similarity of words has a long history in natural lan-
guage processing [9]. In the absence of background semantic
knowledge, the basic assumption is that words that are used
in similar local contexts over all documents in the collection
are similar in meaning for that collection. Accordingly, we
use a representation that captures the context of the words,
and a similarity measure that compares contexts.

We capture local context around a word w occurring in a
document by considering a context window of length l cen-
tered around w and considering words that appear within
the context window. Each word w is then represented using
a weight vector WV (w) over words in vocabulary V , where
the weight WV (w, w′) for any word w′ captures the number
of times w′ has appeared in context windows around w over
all documents in the collection. The counts are converted to
normalized TF-IDF weight vectors6 as usual for documents.
To measure the similarity sim(w1, w2) between two word
representations, we use cosine similarity that takes the dot
product of the two weight vectors WV (w1) and WV (w2).
We will use this representation and similarity measure for
words for all the supervision models and algorithms that fol-
low. In fact, all the algorithms assume that the document
collection in question has been pre-processed and the weight
vectors for all words in the vocabulary are computed.

The algorithm for building a dictionary given a seed word
w needs to rank the words w′ from W in descending order
of sim(w, w′). This can be performed efficiently using an
inverted index as shown in Figure 1. In addition to the
seed word ws, the algorithm takes as input the maximum
length k of the ranking to be returned and the minimum
required similarity t with the ws for a word to be included in
the ranking. Also observe that the threshold t′ determines
a trade-off between accuracy and efficiency. As evidence
to help the user decide which words from the ranking to
include in his dictionary, it is possible to provide the highest
weighted context words that lead to the similarity between
ws and a returned word.

6http://en.wikipedia.org/wiki/Tf-idf

Algo BuildDict(Word ws, Int k, Double t)

1. Initialize candidate set CS to empty set
2. For all words in WV (ws)
3. If WV (ws, w′) > some threshold t′

4. Add w′ to CS

6. For each word w′ in CS
7. Compute similarity sim(ws, w′) with ws

8. Reject w′ if similarity below threshold t
9. Sort remaining words by similarity and return top k

Figure 1: Dictionary building algorithm with one

Seed Word

4.2 Set of Seed Words
In general the user may provide not one but a set of key-

words for specifying a concept C for constructing a dictio-
nary. For example, for the Car Parts dictionary in our earlier
example, the user may be able to provide an initial set con-
taining the words ’engine’, ‘tires’, ‘brakes’, ‘gear’ etc. We
will call such a set a seed set S for C.

The approach in 4.1 can be generalized to accommodate
a set of words as seed. First, however, the semantics of a
seed set needs to be defined unambiguously. Returning to
Wordnet for general purpose English words, each word ws

i in
the seed set S may be assumed to correspond to some node
or synset Ci in the hierarchy. Ideally, if all of the words
refer to the same node Ci, then that is the concept desired
by the user. However, multiple possibilities arise when the
nodes are not all identical. The user may be interested in all
of these concepts, their intersection, or some other subset.
Similar ambiguities arise even in the absence of a concep-
tual structure like Wordnet. We may imagine the user to
be interested in words similar to all of the words in the seed
set, or to some subset of them. To disambiguate, we provide
two logical operators for combining words in a seed set. Us-
ing the OR operator, the user indicates that the dictionary
should contain words that are similar to at least one word in
the seed set. Alternatively, using the AND operator, he can
indicate that words in the dictionary need to be similar to
all words in the seed set. In general, it is possible to accom-
modate all combinations of logical operations between seed
words, but so far these two operators have been expressive
enough in practice.

The algorithm in Figure 1 can be extended in two different
ways for seed words. The first possibility is to construct
an aggregated context vector (depending on the operator)
for the seed set from the context vectors of the individual
seed words, and then use the aggregated context vector to
identify candidate words in steps 2-4. The problem with this
approach is that it lacks transparency from the users point of
view. Since the user did not directly provide the aggregated
context vector it is difficult to explain the returned ranking.
The alternative that we use is shown in Figure 2. Candidates
are identified using contexts of all seed words (steps 2-5).
The similarities for candidate words are then computed with
each seed word ws

i and aggregated according to the operator
(step 9). For OR, we take the maximum, and for AND
the minimum of the individual similarities. The aggregated
similarity scores are again returned in a sorted order.

One difficulty arises with using seed sets for dictionary



Algo BuildDict(Seed Set S, Int k, Double t, Operator +)

1. Initialize candidate set CS to empty set
2. For each word ws

i
∈ S

3. For all words in WV (ws
i
)

4. If WV (ws
i , w′) > some threshold t′

5. Add w′ to CS

6. For each word w′ in CS
7. For each word ws

i in S
8. Compute similarity sim(ws

i
, w′)

9. Aggregate similarity for w′ using operator +
10. Reject w′ if similarity below threshold t
11. Sort remaining words by similarity and return top k

Figure 2: Dictionary building algorithm with a Seed

Set

construction. Deciding whether or not to include a returned
word becomes harder for the user, since he may be unsure
which seed word resulted in its inclusion in the ranking. To
help the user in this task, along with each returned word
w, we provide as evidence the sorted list of top seed words
(optionally with the relevant context words) to which w is
similar.

An interesting situation arises when the user specifies the
AND operator indicating that he is interested in words sim-
ilar to all seed words, but very few (significantly less than
parameter k) words from the vocabulary satisfy this condi-
tion. In Sec. 5, we will see how this issue becomes relevant
when re-using dictionaries. Of course, one possibility is to
simply return an empty ranking. But it is not very helpful
for the user in constructing this dictionary, since he now has
to try out different subsets of the seed set. A better solu-
tion for the user is to partition (or cluster) the seed set into
sub-parts with a coherent sense, and then return the parts
and their corresponding ranked list of words for AND as the
operator.

This clustering of the seed set is done inside the algorithm
in Figure 2 by reducing it to the task of finding connected
components in a graph, as follows. After computing the sim-
ilarities of the candidate words with seed words in step 8, we
construct an undirected bipartite graph between the candi-
date words and the seed words by adding a ‘similarity’ edge
(w′, ws

i ) only if the similarity sim(ws
i , w

′) is above a certain
threshold. Instead of creating a new parameter for this, we
re-use the user specified minimum similarity parameter t,
since it has a similar interpretation. Then we find the con-
nected components in the bipartite graph. Each connected
component now consists of related seed words and candidate
synonyms. So, for each connected component, we return the
seed words in it as a suggested sub-dictionary along with the
ranked list of similarities of the candidate words in the same
component. In effect, we split a seed set into coherent sub-
sets such that each sub-set can seed a new dictionary.

4.3 Positive and Negative Seed Sets
In the third supervision model, in addition to providing

examples of words that he wants in the dictionary, the user
can also provide examples of what he does not wish to be
included. This can significantly enhance the expressibility of
the user’s language when providing supervision. For exam-
ple, the user can provide ‘agent, rep, representative’ as the

positive seed set for constructing a ‘Contact Center Agent’
dictionary, and he can additionally include ‘manager, mgr,
supervisor’ in the negative seed set to indicate that he does
not want words referring to supervisors to be included in
the dictionary. Eliminating these words and their close syn-
onyms can significantly increase the recall of the top k rank-
ing.

Specifically, in this model, the user provides two seed sets,
P s and Ns. As before, we use logical operators to define the
semantics combining the two seed sets. In the case of neg-
ative examples, typically the user wants to leave out words
that are similar to any of the negative seed words. Ac-
cordingly, we interpret the combination of a positive and
a negative seed set as +{wp

i ∈ Ps}AND NOT{wn
i ∈ Ns},

where the operator + may be AND or OR. While it pos-
sible to provide the flexibility of arbitrary combinations of
operators, we have found these two interpretations to be
expressive enough for our use cases so far.

To handle positive and negative seed sets, we extend our
algorithm in Figure 2 and call it BuildDict(Sp, Sn, k, t, +).
The only difference appears in Step 9, where we compute
the aggregate similarity by taking into account the negative
seed words as well. Recall that for any candidate word w,
we aggregate its similarity over the positive seed words using
maximum or minimum depending on the operator +. The
natural way to accommodate the negative seed words is to
subtract from this aggregate score the maximum similarity
simn over all negative seed words. However, this often leads
to sharp decrease in overall similarity scores. So, we use of
an exponential decay model using simn, so that only words
with very high similarity with any negative seed word are
affected.

4.4 Interactive Supervision
The supervision models discussed so far are all ‘offline’

in nature, in that the entire set of positive and/or negative
seed words need to be provided to the dictionary building
algorithm in advance. This is often difficult to do in prac-
tice when exploring a new dataset. Typically, the user may
not know the right positive and negative seed words in ad-
vance. For example, the user may become aware that the
word ‘rep’ is used to refer to contact center agents only af-
ter observing it in the initial ranked list, and then he can
include it in the positive seed set. Thus an ‘online’ inter-
active framework is more natural, where the user starts off
with a small set of words, inspects the results, selects and
rejects words from the returned ranking, and iterates until
he is satisfied. His interactive supervision then provides our
algorithm with the positive and negative seed words at each
stage of the iteration, and the seed sets gradually become
refined and the ranking comes closer to the user’s preference
as the iterations continue.

The overall interaction framework is shown at a high level
in Figure 3. Observe that the user can also modify the min-
imum similarity threshold, the desired number of synonyms
and the combination operation interactively as he thinks fit.

4.5 Multi Dictionary Construction
Typically, a user needs to build several dictionary-based

annotators for exploring and analyzing any dataset. The
naive approach for doing this is to construct each of n dictio-
naries D1 to Dn independently and sequentially using the su-
pervision models discussed earlier in this section. However,



Algo InteractiveBuildDict(Seed Set S)

1. Initialize Sp to S and Sn to empty set
2. Initialize length k, thresh t, operator +

3. Invoke BuildDict(Sp,Sn,k, t, +) of Sec. 4.3 for ranking R
4. While user is not satisfied with R
5. Refine Sp and Sn from feedback
6. Get optional feedback on k, t, +
5. Rebuild R using BuildDict(Sp,Sn,k, t, +) of Sec. 4.3

Figure 3: The Interactive Dictionary Building

Framework

this procedure can be made significantly more accurate and
efficient by constructing them simultaneously. Ideally, the
set of annotators written for any dataset should not overlap
significantly, so their dictionaries should also not have too
many shared words. Thus constructing one dictionary can
benefit significantly from the knowledge of other dictionar-
ies that are of interest for the same collection of documents.
For example, when constructing two dictionaries for ‘Car
Parts’ and ‘Service Center’ simultaneously, it may be clear
that ‘service’ should be included in the second dictionary
and not the first. But it is not as clear when constructing
only the ‘Car Parts’ dictionary individually since car parts
usually get used or repaired in service centers.

In the multi-dictionary construction approach, the user
provides n seed sets (or pairs of positive and negative seed
sets) to the algorithm and gets back n different rankings, one
corresponding to each (or each pair) of the seed sets. The
additional knowledge available to the algorithm is that the
same output word should not appear in more than one re-
turned ranking. The algorithm in Figure 2 can be extended
to handle n seed sets by assigning each candidate word to
only its most similar seed set and not any of the others. We
will motivate and discuss applications of multi-dictionary
construction in the context of reusing sets of dictionaries in
Sec. 5.

4.6 Seeding using Context
In all of the models above, the user provides words as ex-

ample of what he wants or does not want to be included
in the dictionary. The algorithms for dictionary construc-
tion then construct the context vectors of these words to
interpret what they ‘mean’ in the context of the document
collection, and then proceeds to find words that are similar
(or different) in meaning. One short-coming of this supervi-
sion model is that the algorithm cannot proceed when given
out-of-vocabulary words as initial seeds. For example, when
‘agent’ is provided as the seed word, no similar words can be
found for a document collection where ‘agent’ is never used
and the appropriate word is ‘representative’ instead. In an
alternative model, we may imagine the user as directly pro-
viding the ‘meaning’ of the words by specifying a context
vector. For example, the context vector can include words
referring to tasks performed by an agent in a contact center.
All of the algorithms above can then directly start from this
context vector without having to construct it and then pro-
ceed as before. It is also possible to imagine models where
the supervisor provides both seed sets and context vectors
and the algorithm combines the two appropriately for con-
structing the initial context vector. While apparently this

context specification model does not seem as natural as the
supervision-by-seeding model, in Sec. 5 we will see scenarios
in the context of dictionary re-use where it becomes very
useful.

5. RE-USING DICTIONARIES
As motivated in Sec. 2.2, a team of one or more prac-

titioners engaged in providing text analytics services have
to annotate and analyze several document collections from
similar and related domains across different engagements.
They need to construct similar annotators, and as a result
similar dictionaries, for many different document collections.
Thus assetizing and re-using dictionaries is profitable from
multiple angles, such as efficiency, standardization etc.

In this section, we will consider a scenario where a reposi-
tory of dictionaries, constructed from and consolidated over
multiple datasets from different domains, is available to the
practitioner. Automatically organizing and maintaining repos-
itories as a consolidated structure presents technical chal-
lenges of its own. For the purposes of this paper, we will
assume that such a repository is available — possibly con-
structed and maintained manually from dictionaries created
over different datasets using algorithms outlined in Sec. 4.
In general, the repository R could be a complex hierarchical
structure such as WordNet, where each node corresponds to
a concept and has its associated dictionary, and concepts oc-
curring closer to the root represent more general concepts.
We discuss one such repository that we have constructed
and maintain in Sec. 6.

Our biggest challenge in Sec. 4 for constructing a dictio-
nary for a concept was around describing or specifying a
semantic concept in the absence of a semantic structure.
Once the user has a repository R at his disposal, this task
becomes significantly easier — he may simply refer to a node
n ∈ R. Each node n already has its own dictionary of words
n.D. However, note that the same dictionary cannot directly
be used for a new dataset, which may be from a new do-
main and involve a different vocabulary. Therefore a concept
node N needs to be ‘adapted’ for a new document collection.
This involves throwing away of out-of-vocabulary words and
words that are used in a different sense, and including new
words currently not in the dictionary. So the dictionaries
still need to be constructed for every new dataset, and the
existing concept nodes can be used for seeding.

We now look at how such a repository helps in specifying
concepts and building new dictionaries for a new document
collection using algorithms in Sec. 4. The dictionary n.D

associated with a concept node can directly be used as a
positive seed set for the algorithm in Sec. 4.2. The rank-
ing that is returned is inspected by the user to create the
adapted dictionary adapt(n.D) for the new document col-
lection. One issue that assumes greater significance in the
context of dictionary adaptation is the possible lack of co-
herence among the old dictionary words for the new dataset.
The ability to split one dictionary into multiple ones to en-
sure semantic consistency, as described in Sec. 4.2, becomes
important in such cases.

Given a new document collection, a practitioner typically
needs to build several dictionaries for it. The concept nodes
for many of these dictionaries may already be present in the
repository. In such a scenario, instead of adapting the exist-
ing relevant dictionaries one at a time, the practitioner may
simply select and choose all relevant nodes from the reposi-



tory at one shot and adapt them using the multi-dictionary
builder algorithm in Sec. 4.5. In addition to saving the prati-
tioner precious time, we will see in our experimental evalua-
tion (Sec. 6) how the accuracy of dictionary construction is
actually improved as well.

One problematic scenario that commonly arises when adapt-
ing dictionaries for new datasets is that, in spite of a concept
node n being relevant, none of the words in the concept dic-
tionary n.D occur in the vocabulary of the new dataset.
In such situations, seeding using context (Sec. 4.6) becomes
useful. In addition to the concept dictionary n.D, a reposi-
tory node n can also store the context vector n.W associated
with the concept. Now, when all (or a large fraction) of the
dictionary words n.D are detected as out-of-vocabulary for
the new dataset, dictionary construction algorithms can use
both the seed dictionary n.D and context n.W for adapting
a repository concept for the dataset.

In the next section, we discuss experimental evaluation
of our proposed approaches for dictionary construction and
adaptation in real analytics engagements across domains.

6. EXPERIMENTS
Our goal behind proposing this dictionary-building and re-

use framework was enabling practitioners make best use of
their knowledge and effort from previous text mining tasks.
The success of the framework is measured from time savings
(of about 60%) and subjective judgments of the practition-
ers. However we are also interested in concretely measuring
benefits in terms of accepted metrics like precision and recall
– but extensive experimentation proved to be difficult due
to lack of public tagged corpora. In this section we present
some experiments and case-studies that show the efficacy
of the proposed methods. We first describe the real-world
datasets and tasks where we applied our methods. We then
present dictionary construction examples, and experiments
demonstrating effectiveness of user interaction and dictio-
nary re-use. The real proof of this framework lies in the
real-world industrial best practices that can emerge as a re-
sult of these ideas, and we present our experiences in Sec. 7.

6.1 Datasets and Tasks

CRM Analytics. We used several CRM voice of customer
(VOC) datasets in the form of customer satisfaction (CSat)
survey forms, from electronics(15,000 surveys), telecom(20,000),
and automobile(6,000) company helpdesks. The dictionar-
ies constructed are used to find reasons for dissatisfied cus-
tomers, and subsequently implement operational improve-
ments in call centers. This is usually done by correlation re-
porting or predictive modeling on top of annotated records
using concept dictionaries as building blocks [1]. Some com-
mon dictionaries in CRM VOC analysis are mentions of
agent accent, communication issues, knowledge levels, agent
authority issues, particular product and service problems,
competitor comparisons, operational issues like hold time,
accessibility, etc. Please see Sec. 7 for more details.

Other domains. We have applied our dictionary construc-
tion and adaptation techniques in a variety of other domains
like social media mining and data cleansing. We analyzed
Twitter feeds and built dictionaries for finding trends and
topics frequently discussed by people and for finding intents,

product reviews, and activities. We also adapted sentiment
analysis dictionaries – ‘high’ may be a typical positive sen-
timent word but not when it refers to credit card interest
rates. We also used our dictionary construction methods to
help build data cleansing models for unstructured address
datasets. We only report results with CRM analytics here.

6.2 Interactive dictionary creation
We first consider an example of constructing target con-

cept dictionaries, starting from seed words. We denote posi-
tive feedback from the user using a + and negative responses
with a − superscript. Imagine an automobile domain, where
we want to capture the various mentions of car noises in
customer surveys or agent notes. Such a dictionary can
result in product defect insights during aggregate analysis.
Starting with ‘noise’ as a seed word, the top 5 synonyms re-
turned by our algorithm along with perceived relevance are:
sound+, vibration−, brakes−, rattling+, problem−. On in-
corporating this positive and negative feedback, the new ad-
ditional synonyms are: grinding+, popping+, rumbling+,
clunking+, whining+. This example uses OR semantics to
search for similar meaning words and is illustrative of the
power of interaction and feedback. A good noise problems
dictionary (and resultant annotator) can now be created
iteratively; we have illustrated just one feedback iteration
here. Next, we would like to measure the actual effective-
ness of dictionaries constructed by this interactive process.

Ideally, we would like to measure the goodness of the dic-
tionaries constructed compared to gold-standard dictionar-
ies. Unfortunately, such gold standards are hard to come
by in industrial settings. An alternative is to measure the
goodness of these dictionaries in downstream text process-
ing tasks such as annotating documents. We measured pre-
cision and recall of annotating survey documents with tar-
get concepts. We hand tagged a set of 630 survey docu-
ments from the automobile domain with target concepts of
‘pleasant agent’, ‘timeliness’, and ‘car parts’. Inter-human
annotator agreement for this tagging was not explicitly mea-
sured, but we expect about 20%− 30% disagreement due to
the subjective nature of the concepts involved from earlier
experience[5]. We constructed dictionary-based concept an-
notators which annotated mentions of the dictionary words.

We interactively construct timeliness, car parts, and pleas-
ant agent dictionaries and measure precision and recall (and
F1) as the dictionaries evolve. For lack of space, we report
results after just one iteration and restrict dictionary size
to 10. Table 1 records the target concept, the seed word,
aggregation semantics, and top 10 synonyms for 2 rounds
of synonym finding – before and after user feedback. The
last column shows a loose upper bound Recallmax, as the
maximum achievable recall by the ‘best’ 10 word dictionary.
Recallmax is directly computed from the tagged corpus by
counting occurrences and measuring recall for a dictionary
of the 10 most frequent tagged words. The ‘pleasant agent’
dictionary is very precise to start with and loses a slight
amount of precision for significant gains in recall even for just
10 words. Note the final recall of 51% which is very close
to the maximum possible 57%. ‘Timeliness’ is a difficult
subjective concept to tag manually. Yet we achieved nearly
60% precision at 16% recall – maximum possible recall was
also low at 33% showing the subjectivity and ‘spread’ of the
concept. The ‘car parts’ dictionary was constructed with
over 63% precision and merely 5% recall as against a max-



Concept Iter# OR/AND Synonym list with feedback Precision Recall F1 Recallmax

Pleasant agent 1 OR polite+, helpful+, friendly+, 91.4% 43.2% 58.6%

57.6%

(seed: kind) professional+, courteous+, nice+,

pleasant+, discouraged−, aspects−

2 OR polite+, helpful+, friendly+, 80.1% 51% 62.3%
professional+, courteous+, nice+,

pleasant+, very+, good+

Timeliness 1 OR forever+, hung+, minute+, 57.1% 6.3% 11.3%

33.8%

(seed: minutes) while+, years+, finished−,

20−, 15−, 16−

2 OR forever+, hung+, minute+, 59.5% 16.6% 25.9%
while+, years+, atleast+,

specifically−, clock−, wait+

Car parts 1 AND opener+, locks+, mat+, latch+, 43.7% 1.6% 3.1%

40.2%

(seed: door) trunk+, automatic+,

garage−, 60−, open−

2 AND opener+, locks+, mat+, latch+, 63.4% 5.2% 9.6%
trunk+, automatic+,

side+, home−, motor+

Table 1: Utility of interactive dictionary construction

imum possible 40%. The word ‘parts’ for this dictionary
was responsible for over 7% recall, and the algorithm hap-
pened to miss this word. Across the board, we observe that
F1 improves significantly with just one iteration. In reality,
the interactive dictionary building process is iterative and
manually tuning is always possible. Dictionaries also con-
tain many more than just 10 entries, but we have shown the
effectiveness of feedback even for such small dictionaries in
this experiment.

Dictionary Precision Recall
Electronics ‘Pleasant agent’ → Automobile ‘Pleasant agent’

kind, thorough, courteous, helpful, 91.9% 29.3%
polite

kind, thorough, courteous, helpful, 87.7% 46.6%
polite, friendly, nice,

professional, knowledgeable, pleasant

Telecom ‘Timeliness’ → Automobile ‘Timeliness’
minutes, hours, wait, while,mins, 60.1% 15.2%

minutes, hours, wait, while,mins, 49.6% 24.2%
forever, hung, putting, hold, research

Fictional ‘Car parts’ → Automobile ‘Car parts’
door, window, steering, tire 90.6% 13.3%

door, window, steering, tire, motor, 75.7% 16.1%
garage, informed, open, passenger, flat

Table 2: Adapting dictionaries

6.3 Adapting dictionaries
Next, in Table 2 we turn to adapting dictionaries from

other domains to automobiles, and measure precision and
recall on our tagged corpus as earlier. We would have tried
in-domain adaptation if we had other automobile dictionar-
ies available. Again, we take precision and recall of resul-
tant dictionary-based annotations as a proxy for measur-
ing the goodness of the adaptation for the 3 target dictio-

naries. To begin with, we use a ‘pleasant agent qualities’
dictionary from an electronics company’s helpdesk data, a
‘timeliness issues’ dictionary from a financial company’s call
center data. For ‘car parts’ we did not have access to a sep-
arate dataset and created a fictional ‘car parts’ dictionary.
In Table 1, for each of these dictionaries we show their pre-
cision and recall if used as-is in the respective first rows.
Next, with OR semantics, we adapt them to the target au-
tomobiles dataset, and present the adapted dictionaries with
their precision and recall on the tagged corpus of 630 sur-
veys. The ‘pleasant agent’ dictionary from electronics is ap-
plicable as-is with very good precision of 91% but low recall
of 29%. Recall improves to 46% on adaptation as against
Recallmax of 57%. Similarly, the finance ‘timeliness’ dic-
tionary is applicable as-is with moderate precision and low
recall. However, it achieves a final precision of 49% and
recall of 24%. The recall improvement is significant in the
light of a Recallmax of 33%. ‘Car parts’ being a much larger
target dictionary achieves good final precision but lower re-
call. Perhaps, it would have been helped by a real related
dictionary of another automobile dataset to adapt from. F1
values also always improves, but are not shown for space con-
straints. This performance shows that this is a very good
starting point for dictionary construction in a new domain
which the practitioner may not be too familiar with. It is
clear that these numbers will go down when trying to adapt
more domain specific dictionaries, and we will see this next.

In the above experiment, we adapted the 3 dictionar-
ies simultaneously using the multi-dictionary presented in
Sec. 5. Independent adaptation led to very similar final
numbers, not reported here for space reasons. This is not
surprising give the very distinct senses of these three con-
cepts. We then conducted a small experiment to really
test the efficacy of multi-dictionary adaptation. We did
multi-dictionary adaptation for two dictionaries: 1) a ‘pleas-
ant agent’ dictionary: kind, nice, pleasant, polite, and 2)
a ‘agent knowledge’ dictionary: knowledgeable, thorough,
efficient, investigated. Note that in all previous experi-
ments, we were satisfied with a fairly general sense of ‘pleas-



ant agent’. However, now when this has to compete with
‘agent knowledge’, words such as ‘efficient’ and ‘knowledge-
able’ no longer belong to ‘pleasant agent’. This is precisely
the purpose of multi-dictionary adaptation. All these words
may belong together in a more abstract ‘agent qualities’
dictionary, but finer discrimination is now needed. The
result of this adaptation was a new ‘pleasant agent’ dic-
tionary: kind, nice, pleasant, polite, helpful, friendly,
courteous, cordial, informative, considerate with preci-
sion 89.1% (higher than the adapted one in Table 2). The
resultant ‘agent knowledge’ dictionary was: knowledgeable,
thorough, efficient, investigated, slow, enjoyed, cooperative,
responses. While we have no tagged data to measure per-
formance, the distinct sense of this dictionary is obviously to
capture mentions of agents having and applying knowledge
to solve complex problems.

Discussion. Some additional observation can be made from
Table 1 and Table 2. Interactively building dictionaries from
scratch leads to good dictionaries, but adapting earlier dic-
tionaries also leads to dictionaries of similar quality. Interac-
tively building dictionaries led to better precision for ‘pleas-
ant agent’ and ‘timeliness’ than adapting them. Adaptation
on the other hand led to much better recall for ‘timeliness’
and ‘car parts’, where the concepts at hand are very broad
and subjective. Note the significant amount of time can be
saved by practitioners by choosing the right dictionaries to
adapt, and then apply their domain knowledge to decide
which dictionaries to improve further interactively. Esti-
mates from real practitioners suggest that adapting dictio-
naries consistently results in 50–60% time savings, compared
to starting new dictionary building tasks from scratch. We
are looking to do further user studies to validate this.

All these methods sit together in the arsenal of our text
mining practitioners, and adaptation is usually followed up
by interactively improving dictionaries always guided by in-
tuition and domain knowledge. This is in contrast to the cur-
rent state of the art where products ship with pre-packaged
components, but further construction and maintenance of
dictionaries are left as a manual task for the practitioners.
These experiments and examples clearly demonstrate that
the right set of dictionary creation and adaptation tools can
equip practitioners to efficiently perform dictionary-based
text mining tasks in a wide variety of domains. We recount
our experiences and the emergence of a consistent method-
ology around this in the next section.

7. EXPERIENCES AND BEST PRACTICES
We have seen dictionary-based text mining applied to di-

verse areas, from CRM analytics for automotive, telecom,
retail, to social media mining and legal applications. An
emerging trend in the text analytics industry is to move
from product-centric to service-centric offerings. This saves
software costs and offers the expertise of practitioners (data
miners or business analysts) to clients who need not worry
about how the technology works. Such a commoditization
of text mining necessitates a level of tool and process stan-
dardization for the practitioners which is lacking as of now.
Note that pre-packaged components in commercial frame-
works follow a part of this principle and ship with dictionar-
ies per industry (telecom, finance, healthcare) and intended
usage type (customer service analysis, social media mining,
online review/blog/forum analysis). While this is a start,

we believe the evolution, customization, and re-use of these
components and linguistic resources are what will lead to
more effective practitioners.

As researchers, we have worked on designing and develop-
ing commercial text analytics service offerings in the CRM
area[1]. This enabled us to work together with practitioners
and observe the potential for commoditization in dictionary-
based text mining. The work presented in this paper re-
sulted directly from this interaction with practitioners, and
also allowed us to dwell upon questions like long-term re-use
and process standardization. In engagements, practitioners
will use tools and products in an ad-hoc manner to solve
their current problem. The prevalence of human interven-
tion and supervision in real-life dictionary-based text mining
presented us the opportunity to make tools that facilitated
interactive dictionary building, adaptation, and re-use.

We have already seen the time and effort savings and ac-
curacy improvements these tools can bring about in our ex-
periments. We also saw the supervision required in higher
order decisions like ‘which set of dictionaries to build?’ for
the dataset at hand. While we ignored this question while
talking about interactively building dictionaries, it is central
to applying transfer learning and adaptation ideas across
domains. We now fit the various pieces discussed in this pa-
per together in a proposed methodology for asset-based and
standardized dictionary-based text mining. We envisage an
evolving repository of dictionaries, possibly organized as a
hierarchy, that will be a crucial tool in the arsenal of text
mining practitioners. Figure 4 shows one specific real-world
instantiation of such a repository that is built from scratch
and has evolved over several CRM analytics engagements
(some industry specific dictionaries omitted). Such a repos-
itory has proved a great help as seen in our experiments
and examples of one shot multi-dictionary adaptation. This
repository along with the other dictionary construction tool-
ing is a concrete asset that takes a step toward re-use and
standardization that is important to analytics services.

For the area of CRM analytics, the idea in the example
repository is to have a clear set of domain independent dic-
tionaries (say customer service or contact center issues) that
can be quickly adapted to new datasets with no or very little
human input. We have seen the efficiency and time savings
of this in Sec. 6.3. At the same time it is important to build
a set of domain specific dictionaries over time that can at
least be adapted in datasets of the same industry. It is clear
how a text analytics engagement for say a telecom company
A can be speeded up significantly is the human knowledge
that has gone into building dictionaries for telecom com-
pany B can be effectively re-used. Across domains too, had
we had a ‘bike parts’ dictionary or ‘car parts’ dictionary
of another company, our seeding and subsequent results for
‘car parts’ would have been better than the fictional seeds
we used in our experiments in Sec. 6. In telecom as well as
electronics we did have ‘phone parts’ and ‘computer parts’
dictionaries but the specific terms did not even occur in the
automobile domain. In Sec. 4.6 we showed how dictionaries
can be adapted from contexts even without seed sets. If we
had a repository like the example one containing ‘computer
parts’ with its context of complaints, breakages, and fixes,
we could adapt it to build a ‘car parts’ dictionary.

Such asset-based usage is an attractive next step in the
evolution of text mining as it moves on from using pre-
packaged components to adapting, customizing, and enrich-



Figure 4: An example evolving dictionary repository

ing back these components. In effect, we have begun to see
repeatability and time/effort savings for practitioners by fol-
lowing our proposed methodology of creating and re-using
private domain-specific repositories. We believe this is a
potential standard methodology for practitioners – to de-
fine and semi-automatically create private domain-specific
Wordnets in the form of a repository of dictionaries and their
contexts that can help dictionary-based text mining. While
these are first steps, feedback from practitioners working in
real-life engagements leads us to believe we are on the right
track. We would like to see completely customizable off-the-
shelf repositories become available for re-use across tasks
and practitioners, thereby saving time, effort, and costs.

8. CONCLUSION
We presented interactive, corpus-aware dictionary con-

struction, adaptation, and re-use techniques. We showed
these techniques work well practically on real-world datasets.
Due to our association with designing and building commer-
cial text mining service offerings, we were able to dwell upon
the important questions of assetization and re-use in text
mining. We proposed an evolving repository of dictionaries
with associated tooling that can significantly help reduce the
time and effort practitioners spend on new dictionary-based
text mining tasks. The main challenge facing the text an-
alytics industry is scarcity of practitioners that understand
technology and have business insights. Asset-based tooling
we presented helps tackle this skills shortage by allowing
knowledge re-use. While there is more to be done, we hope
these are first steps toward standardization that helps the
text mining industry mature with wide-spread deployments.

9. REFERENCES
[1] I. Bhattacharya, S. Godbole, A. Gupta, A. Verma,

J. Achtermann, and K. English. Enabling analysts in
managed services for CRM analytics. In Proc. of

KDD, 2009.

[2] I. Bhattacharya, S. Godbole, S. Joshi, and A. Verma.
Cross-guided clustering: Transfer of relevant
supervision across domains for improved clustering. In
Proc. of ICDM, 2009.

[3] J. Blitzer, M. Dredze, and F. Pereira. Biographies,
bollywood, boom-boxes and blenders: Domain
adaptation for sentiment classification. In ACL, 2007.

[4] R. C. Bunescu. Learning for Information Extraction:

From Named Entity Recognition and Disambiguation

To Relation Extraction. PhD thesis, Department of
Computer Sciences, UTexas at Austin, 2007.

[5] S. Godbole and S. Roy. Text classification business
intelligence and interactivity: Automating c-sat
analysis for services industry. In Proc. of KDD, 2008.

[6] R. Jones, A. McCallum, K. Nigam, and E. Riloff.
Bootstrapping for text learning tasks. In IJCAI

Workshop on Text Mining, 1999.

[7] D. D. Lewis, R. Ghani, D. Mladenic, I. Moulinier, and
M. Wasson. Workshop on operational text
classification. In conjunction with KDD 2003.

[8] T. Li, V. Sindhwani, C. Ding, and Y. Zhang.
Knowledge transformation for cross-domain sentiment
classification. In Proc. of SIGIR, 2009.

[9] D. Lin. Automatic retrieval and clustering of similar
words. In Proc. of COLING-ACL, 1998.

[10] L. Mihalkova and R. Mooney. Transfer learning from
minimal target data by mapping across relational
domains. In Proc. of IJCAI, 2009.

[11] S. O’Dowd. Unstructured data and text analytics in
capital markets, IDC research document, doc
fin212553/july, 2008.

[12] P. Pantel and D. Lin. Discovering word senses from
text. In Proc. of KDD, 2002.

[13] E. Riloff and R. Jones. Learning dictionaries for
information extraction by multi-level bootstrapping.
In Proc. of AAAI, 1999.

[14] H. Takeuchi, L. V. Subramaniam, T. Nasukawa, and
S. Roy. Getting insights from the voices of customers:
Conversation mining at a contact center. Inf. Sci.,
179(11):1584–1591, 2009.

[15] S. Thrun and L. Pratt. Learning to learn. Kluwer
Academic Publishers, Norwell MA USA, 1998.

[16] D. Wenyuan, X. Gui-Rong, Y. Qiang, and Y. Yong.
Transferring naive Bayes classifiers for text
classification. In AAAI, 2007.

[17] P. Wu and T. G. Dietterich. Improving SVM accuracy
by training on auxiliary data sources. In Proc. of

ICML, 2004.


