
Structured Entity Identification and Document
Categorization: Two Tasks with One Joint Model

Indrajit Bhattacharya
IBM India Research Lab,

New Delhi
indrajbh@in.ibm.com

Shantanu Godbole
IBM India Research Lab,

New Delhi
shgodbol@in.ibm.com

Sachindra Joshi
IBM India Research Lab,

New Delhi
jsachind@in.ibm.com

ABSTRACT
Traditionally, research in identifying structured entities in
documents has proceeded independently of document cat-
egorization research. In this paper, we observe that these
two tasks have much to gain from each other. Apart from
direct references to entities in a database, such as names
of person entities, documents often also contain words that
are correlated with discriminative entity attributes, such
age-group and income-level of persons. This happens nat-
urally in many enterprise domains such as CRM, Banking,
etc. Then, entity identification, which is typically vulnera-
ble against noise and incompleteness in direct references to
entities in documents, can benefit from document catego-
rization with respect to such attributes. In return, entity
identification enables documents to be categorized accord-
ing to different label-sets arising from entity attributes with-
out requiring any supervision. In this paper, we propose a
probabilistic generative model for joint entity identification
and document categorization. We show how the parame-
ters of the model can be estimated using an EM algorithm
in an unsupervised fashion. Using extensive experiments
over real and semi-synthetic data, we demonstrate that the
two tasks can benefit immensely from each other when per-
formed jointly using the proposed model.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining; I.5.1 [Pattern
Recognition]: Models—Statistical ; I.5.4 [Pattern Recog-
nition]: Applications—Text processing

General Terms
Algorithms, Theory

Keywords
document categorization, entity identification, probabilistic
generative model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-193-4/08/08 ...$5.00.

1. INTRODUCTION
The importance of unstructured data as an information

source is increasing steadily, both in the scientific and busi-
ness communities. Recent Gartner 1 research reports sug-
gest that 80% of data in today’s enterprises is unstructured.
In the growing competitive landscape, enterprises cannot af-
ford to let such huge amounts of data and insights hidden
therein go untapped. There has also been a lot of activ-
ity in the research community towards deriving insight from
unstructured documents and integrating heterogeneous data
sources. In this paper, we focus on two tasks in unstructured
data — entity identification and document categorization —
that are of critical importance, but have traditionally been
investigated independently.

Entity identification in unstructured data forms a criti-
cal component of data integration, which has attracted sig-
nificant amount of research in recent years[7, 5]. Given a
structured database containing descriptions of various enti-
ties, and a collection of unstructured documents mention-
ing or referring to one or more entities from this database,
entity identification attempts to identify the most relevant
database entity (or set of entities) for a given document.
The task is often made challenging when the mentioned at-
tributes do not exactly match the entity descriptions in the
database due to misspellings and other kinds of noise, or
when the evidence available in the document is insufficient
for pinning down any single entity.

To illustrate, consider a movie database such as IMDB 2

and movie reviews written by various users. Figure 1 shows
sample movies from the database. The database contains
movies with information such as movie name, actors, di-
rectors, writers, genre of the movie, and its rating, among
myriad other information. Figure 2 shows some snippets of
reviews written by different online users for movies from this
database.

In this scenario, the goal of entity identification is to tag
movie reviews with the most appropriate movie from the
database. This is typically achieved by first annotating
named entities in the documents and then identifying en-
tities based on these annotations. The annotations in our
example reviews are highlighted in Figure 2. For example,
review (a) has two annotations, ‘Harrison Ford’ and ‘David
Twohy’. These annotations uniquely map the review to the
fourth movie entity, Fugitive, in the database. However, for
the remaining reviews, the annotations do not have enough
information to unambiguously identify a unique movie.

1
http://www.gartner.com

2
http://www.imdb.com

Figure 1: Sample Movies from IMDB

Harrison Ford is a resourceful person
who stay out of reach to the marshal.
David Twohy has written some
interesting plots and chases

When it comes to create a universe
George Lucas is undisputed leader.
Harrison Ford has done justice and
special effects are superb.

George Lucas script seemed funny
enough. It was a fairly good movie with
couple of laughs. There was not much
story but Harrison Ford was good.

Harrison Ford the adventurer is it in yet
another quest. To find his father who is
in search of the Holy Grail. George
Lucas has done a wonderful job.

Harrison Ford

Harrison Ford

Harrison Ford

Harrison Ford

George Lucas

George Lucas

George
Lucas

David Twohy
(a) (b)

(c) (d)

Figure 2: Snippets of Movie Reviews from IMDB

An equally important and well-researched task over un-
structured document collections is that of document cate-
gorization[11, 16]. This involves automatically tagging doc-
uments in a collection with labels from a pre-defined label
set. In our movie example, it is desirable to automatically
organize all reviews according to the genres for easy brows-
ing and retrieval. Note that it may be equally useful and
meaningful to organize the same collection of reviews ac-
cording to some other label-set, for example, the popularity
of the movies or the demographics of the writer. In the
classification setting, a critical requirement is sufficient and
accurate supervision, which is typically provided in the form
of training samples for the different labels. However, design-
ing meaningful label-sets and building training data is time
consuming, error prone and highly human-intensive. In the
document categorization setting, we investigate if this need
for supervision can be alleviated.

In this paper, we consider these two text mining tasks to-
gether and motivate how they can mutually reinforce each
other under certain scenarios. In our example, entity iden-
tification based solely on the annotated terms in the doc-
ument often fails to unambiguously identify an entity. We
observe that the unstructured words in the document that
are not annotated, and are typically thrown away during the
entity identification process, often carry useful information.
Although they do not directly mention an entity attribute,
they may provide significant indirect evidence for inferring

database column values. As an example, for the review in
Figure 2(b), words such as adventurer, quest and search are
suggestive of a movie from the ‘Adventure’ genre. When
combined with the evidence from the annotated terms, it
clearly points to the first movie, Indiana Jones and the

Last Crusade. In enterprise settings, such as Banking and
CRM, the words used in a customer communication are of-
ten clearly indicative of her age-group and income level.
However, discriminating these categories from words in the
document requires that we have trained classifiers based on
interesting database column values.

Now, consider the document categorization side of the
story. We have seen that supervision in the form of labeled
training samples is a critical requirement for effective cate-
gorization. However, if we are able to automatically and ac-
curately identify entities for documents, then the database

columns values provide labels for the documents. In our
example, if all the reviews are correctly linked to their cor-
responding movies, then review (a) would be labeled as ‘Ac-
tion’, review (c) as ‘Comedy’ and so on. Then, by aggregate
analysis, any classifier would discover that words such as ad-

venturer and quest are indicative of ‘Action’ movies, while
funny and laugh are suggestive of the ‘Comedy’ genre. In
the CRM setting, it is possible to discover vocabularies used
by different categories of customers.

Thus, quite clearly, the two tasks can be combined to
their mutual benefit. In this paper, we explore how the two
tasks can be formally related, and propose a probabilistic
model for jointly performing entity identification and docu-
ment type categorization.

Our contributions: We motivate the problem of jointly
addressing the two tasks of entity identification and docu-
ment categorization and show how they can naturally bene-
fit each other in many domains. We propose a probabilistic
generative model for documents that accounts for unstruc-
tured words and mentions of entity attributes, and infer-
ence in this model jointly addresses the two tasks. We show
how parameters can be estimated in this model in a com-
pletely unsupervised fashion from a document collection and
a backend structured database. We demonstrate using ex-
periments over real and semi-synthetic data that our model
improves entity identification over state-of-the-art baselines
and enables unsupervised document categorization to com-
pete with supervised approaches.

Outline: Next, we formulate the joint problem and explore
ways to relate the two tasks in Section 2. Then, we describe
our joint probabilistic model in Section 3 and the unsuper-
vised parameter estimation algorithm for it in Section 4. We
describe experimental results over different datasets in Sec-
tion 5. We discuss our contributions in the light of related
research in Section 6 and finally conclude in Section 7.

2. PROBLEM FORMULATION
In this section, we formulate the technical problem of

jointly addressing entity identification and document cat-
egorization. We start by formulating the two tasks inde-
pendently, and then motivate why and how they can be
addressed jointly.

Entity Identification: The first problem is entity identi-

fication, where we are given a structured database that con-
tains a relation with k columns C = {Ci}. We will refer to
each row of the relation as an entity e, having its own values
e.Ci for the k columns. We also have a collection D = {di}
of documents, such that each document is about a specific
entity from the database. More formally, each document d
contains a set of attribute terms d.A = {ai}. If ei is the
central entity for this document, then each attribute term
ai corresponds to some column value ei.Cj of entity ei. For
instance, in our previous IMDB movie database example,
the columns in the relation are Actor1, Director1, Genre,
etc. Each row in the database corresponds to a movie entity
which has its own values for these columns. Our document
collection consists of movie reviews, each of which is about a
specific movie from the database and mentions its actors, ac-
tresses, director, among other things. These tokens form the
attribute terms of the document. Given this bag-of-terms,
our goal is to identify the central entity from the database

relation. In our example, the goal is to identify the movie
from the review assuming enough evidence is present for the
inference. The major challenge is that explicit identifiers of
the entity, such as a unique movie id, or sometimes even
movie name, may not be available in reviews. This holds
true especially for noisy documents where even ai may not
exactly match its corresponding column value of e.Cj . In
our example, the database contains fully qualified names
of people which are unlikely to be used in a review. Just
‘George Lucas’ is ambiguous in the IMDB database and the
full name of the director of our interest is ‘George Walton
Lucas Jr.’. Misspellings and abbreviations are also common,
all adversely affecting recall. Precision can also be affected
by noisy and partial information in the document if it leads
to an incorrect entity being identified.

Document categorization: A critical corpus-level task
that needs to be performed over the document collection
is document categorization. Let W be the vocabulary of
unstructured words that are used in the document collec-
tion. Each document di in the collection has its own set
of words di.W = {wi1, wi2 . . .} drawn from the vocabulary.
Categorization groups documents in the corpus into differ-
ent classes or categories based on the words they contain.
This is helpful in organizing the document collection and
making it amenable for navigation, browsing, and retrieval.

In the clustering formulation, the categorization process is
unsupervised, but categories are not pre-specified. Instead,
documents are grouped according to how similar/dissimilar
they are in terms the words they contain using projections in
some vector space model. In contrast, the classification ap-
proach supervises how the documents should be categorized
by specifying a label-set and providing examples of docu-
ments for each label. An interesting and important aspect
of classification is its multi-faceted nature. The same docu-
ment collection can be categorized differently by providing
a different set of labels. For example, the same collection
of movie reviews can be classified equally meaningfully ac-
cording to genre, rating, budget, country of origin, awards
etc. This, however, comes at the cost of having to pro-
vide sufficient amount of labeled training data for each facet
(label-set), which is costly, time-consuming, and often infea-
sible for some applications. Clustering, on the other hand,
comes for free in terms of providing supervision, but can
only produce a single facet based on the dominant features
of the collection for a given similarity measure. For exam-
ple, if the best grouping of the review collection is based on
the movie ratings, then that is the separation that clustering
would yield.

Relating the two tasks: In many scenarios, categorization
and entity identification can be performed jointly and can
benefit from one another. Imagine documents containing
both attribute terms di.A mentioning entities and unstruc-
tured words di.W , such that the words are strongly corre-
lated with the column values of the central entity. This hap-
pens naturally in many real-world domains. As motivated in
the introduction, the words used in a movie review are differ-
ent for movies of different genres, as also for movies of differ-
ent popularity ratings. In the enterprise CRM setting, differ-
ent customers may complain differently even about the same
products, depending on their demographic background.

When such correlations exist, both entity identification
and document categorization can benefit. If some column

values of the entity can be predicted from the words con-
tained in the document, then these words provide additional
evidence for identifying the entity. Additionally, since the
column value is inferred using aggregate statistics, it pro-
vides robustness against noise. For categorization, it opens
up the possibility of getting the best of both the classifica-
tion and clustering worlds. If structured entities from the
database can be associated with documents, then the corre-
lated column values can act as multiple label sets for these
documents. This ‘supervision’ can be used to perform multi-
faceted categorization over the corpus without explicitly us-
ing labeled training data.

We next explore possible ways to associate the vocabu-
lary and entities in the database and enable their mutual
reinforcement. Observe that associating words with specific
entities is not helpful in any direction. It does not help en-
tity identification unless the words are known for the specific
entity. Nor does it help document categorization as the size
of the label set would be huge.

Relating words and entities: Instead of associating words
with specific entities, we relate words to groups of similar
entities in the database. We describe two natural ways of
doing this. The first scenario is the relation-based-vocabulary

scenario where the entities are partitioned over multiple re-
lations R = {Ri}, with directly corresponding columns.
We have different word distributions associated with dif-
ferent relations Ri. For movies, imagine that we have or-
ganized (English) movies under different relations according
to their country of origin. We have words associated with
each country (or, equivalently each relation) and the words
di.W in a movie review di are picked from the vocabulary
of the relation containing the movie. The second scenario is
the column-value-based-vocabulary scenario, where all enti-
ties belong to the same relation R. This relation has special
columns T = {Ti} which are called the “type columns”, and
the words in a document depend on the values {e.Ti} in the
type columns for the central entity ei from R.

Equivalence of the formulations: The relation-based-

vocabulary scenario can easily be mapped to the column-

value-based-vocabulary scenario. In the movie domain, we
can add all the movies from the different relations in R into
a single relation R with a new type column T ∗ which in-
dicates the original relation Ri ∈ R for the movie entity.
The words in a movie review are determined by the value
ei.T

∗ for the movie ei. This reduction uses a single entity
type column, but we can show that the multi-column set-
ting is also not any more expressive. We can reduce it to the
relation-based-vocabulary scenario by creating one relation
Ri in R for every combination of values in the type columns.
We can then populate these relations with entities that have
that specific (entity, type value) combination. The relation-
based and column-value-based scenarios are thus equally ex-
pressive; the single-column model is also as expressive as the
multi-column model.

For the rest of this paper, we will focus on the single-
column-value-based-vocabulary scenario, without any loss
in generality. Specifically, we have all entities in a single re-
lation R with k columns Ci. In addition to these k columns,
we have one “type column” T containing values {ti}. Each
value ti for T has different words from the vocabulary W
associated with it. Each document di in the collection D is
about a central entity ei. It contains attribute terms di.A

derived from the column values ei.Cj of the central entity.
Additionally, the document contains words di.W from the
unstructured vocabulary W that are associated with the
type value ei.T of the central entity. Our goal is then to
identify the central entity from the document di and also
categorize the documents according to type values ti. The
challenge is that no labeled data is provided for learning the
word distributions for the type values.

3. A JOINT PROBABILISTIC MODEL
In this section, we propose a joint probabilistic model that

unifies entity identification and document categorization by
relating word distributions with entities in the structured
database. The probabilistic model is shown in the plate
representation in Figure 3. It encapsulates three plates, or
repetitive processes. The outermost plate describes the gen-
eration process for each document. This repeats N times,
once for each document in the collection. Among its pa-
rameters, the model has a prior probability P (T = t) over
possible values for the type column T . The generation pro-
cess for each document first chooses a value t for the type
column T using the distribution P (T). This chosen value
t for the type column plays the key role in relating the at-
tribute terms and the unstructured words in the document.

On the unstructured side, this type value determines the
words from the unstructured vocabulary W that are cho-
sen for the document. This is done using a distribution
P (W |T = t) over words w ∈ W for each value t of the type
column. The smaller plate on the right shows the generation
process for the unstructured words in the document. The
process repeats m times, once for each word in the docu-
ment. In each iteration, a word is chosen from W using the
distribution P (W |T = t) for the chosen type column value.

Let us now see how the attribute terms are chosen. For
each type value t, the model has a distribution P (e|T = t)
over entities e from the database that have value t for their
type column. The model first chooses an entity e using the
distribution P (E = e|T = t). This is the central entity e
in the document. Additionally, there is a prior distribution
P (C = c) over the k columns of the relation. These two dis-
tributions allow us to generate the attribute terms a in the
document. This process in captured using the smaller plate
on the left. It repeats n times, once for each attribute term
a in the document. In each iteration, the model chooses a
column c from the prior distribution P (C = c) over columns.
This determines the specific entity column e.C to be men-
tioned as the attribute term. Then the attribute term a is
generated using a noisy process from the column value e.C
of the chosen entity e.

In summary, the model parameters Θ include the following
distributions — P (C) over columns in the relation, P (T)
over values for the type column, P (E|T) over entities in
the database and P (W |T) over words in the unstructured
vocabulary for each value t of the type column. The observed
variables in the model are the unstructured words w ∈ d.W
and the attribute terms a ∈ d.A contained in the document.
They are shown shaded in Figure 3. The entity e, the type
value t and the columns c for the attribute terms are all
hidden and need to be inferred from the observed variables.

The probability P (a|E = e, C = c) describes the noise
process that generates the attribute terms based on the col-
umn values of the entity in the database. While it is possible
to incorporate this as a parameter in the model, this has cer-

c

t

e

a

w

n

m

N

c

t

e

a

w

n

m

N

Figure 3: Probabilistic generative model for docu-
ments with attribute terms and unstructured words

tain disadvantages. This needs to capture all different ways
in which noise can be introduced in the domain, and ex-
plicitly model all of them. This would tailor the model too
closely to specific domains, and make it hard to generalize.
Enumerating and assigning probabilities to all different ways
for transforming an entity column value also is an extremely
laborious process. Instead, we can make use of the fact
that the document collection has already been provided to
us. So, we can safely make a closed world assumption, and
for any column value in the database, consider only those
transformations for it that occur in the documents in the
collection. For example, for the name ‘Harrison Ford’, the
transformations that need to be considered for it are only
‘Ford’, ’Harrison Ford’, ‘H. Ford’ and ‘Harrison’, if those are
the only ‘similar’ names that occur in the collection. Though
‘Harry Ford’ can be a valid candidate in general, we do not
need to assign a probability to it, if it never occurs in the re-
views that we have in hand. The issue here is in determining
which terms in the document are ‘similar’. We handle this
by considering as input a similarity measure for each column
c ∈ C in the relation. Then, given any column value from
the database, the similarity measure specified for that col-
umn automatically defines a distribution over all attribute
terms in the document collection. As an additional advan-
tage, specifying the similarity measures decouples the model
from the underlying domain.

We will now quickly run over the generation process to see
how movie reviews are generated by our model in the exam-
ple movie domain. Here, the type column corresponds to
genres of movies, so the model has a prior distribution over
movie genres. So first, a genre, say ‘Action’, is picked using
the distribution P (Genre = x). For each genre, the model
has two distributions, P (Movie = m|Genre) over movies ,
and P (Word = w|Genre) over unstructured words. Once
the genre is chosen, the unstructured words (such as adven-

turer, quest, justice, etc.) are generated for the document
using the word distribution for the selected genre ‘Action’.
On the structured side, a movie, say “Raiders of the Lost
Ark”, is chosen from the ‘Action’ genre using the distribu-
tion over ‘Action’ movies. Finally, attribute terms are gen-
erated for this movie. This is done by repeatedly choosing
a column from the movie table, such as ‘Actor’, ‘Director’,
‘Producer’, ‘Production House’, etc. using a prior distribu-
tion over movie columns, and then generating a noisy form of
the chosen column for the movie. For example, for “Raiders
of the Lost Ark”, we may first choose ‘Actor’, get to “Har-
rison Ford” and generate “Ford” as the attribute term, then

choose ‘Director’, select “George Lucas” and generate “Lu-
cas” as the second attribute term, and so on.

Consider a document di containing m unstructured words
wi = {wij} and n attribute terms ai = {aij}. The hidden
variables for this document are the entity label ei, the type
value ti and the columns labels ci = {cij}, j = 1..n for each
attribute term. The joint probability distribution over these
variables given the model parameter Θ is defined as:

P (di|Θ)

= P (ti, ei, ci, ai, wi|Θ)

= P (ti)P (ei|ti)P (ci)P (ai|ei, ci)P (wi|ti) (1)

= P (ti)P (ei|ti)

n∏

j=1

P (cij)P (aij |ei, cij)

m∏

j=1

P (wij |ti)

= P (ti)P (ei|ti)
∏

c

P (c)nc

i

n∏

j=1

P (aij |ei, cij)
∏

w

P (w|ti)
nw

i

where we have factorized the joint distribution according
to the independence assumptions in the model, and nc

i and
nw

i are the number of times column label c and word w
respectively occur in the document di.

If the document collection D contains N documents {di},
then, assuming that each document is generated indepen-
dently of the others, the likelihood of the document collec-
tion given the model parameters Θ can be given as P (D|Θ) =∏N

i=1 P (di|Θ).

Formalizing the intuition: The factored joint distribu-
tion in Eq. (1) helps to explain the intuition behind how the
two tasks of entity identification and document categoriza-
tion reinforce each other. Traditional entity identification
considers P (ci)P (ai|ei, ci), possibly augmented with a prior
P (ei) over the entities, for choosing the most likely entity
for the document. In our model, the words in a document
come into play to determine the ‘type’ for the document, and
entities that belong to that particular type are more likely
to be right entity for the document. This helps to reduce
the ambiguity in identifying entities. On the document cat-
egorization side, standard document categorization would
consider P (ti)P (wi|ti) for choosing the most likely type for
the document. But, in Eq. (1), the attribute terms in the
document play a role in identifying entity candidates for the
document, and only the entities identified for the document
contribute relevant type labels for it. We will see in Section 5
that the experimental results back up this intuition.

4. PARAMETER ESTIMATION USING EM
In this section, we discuss how the model parameters, de-

scribed in Section 3 are estimated from a given document
collection and the algorithmic challenges that are involved.
Note that we do not require labeled training data for es-
timating the model parameters, and instead resort to un-
supervised estimation using the Expectation Maximization
approach. Using standard EM derivation and incorporating
the sum constraints for each probability distribution, the
update rules for the model parameters look as follows:

P (ti = x) =
N∑

i=1

P (ti = x|ai, wi)/N

Algorithm LearnModel (Doc Set D, Relation R)

1. Initialize model parameters
2. Iterate until convergence or k times

% E step
3. for each document d in D
4. for each topic t in T

5. for each entity e in E
6. for each col assign c to d.A

7. compute P (t, e, c|d)
8. compute P (t, e|d)
9. compute P (t|d)
10. for each column c in C
11 compute P (c|d)

% M step
12. for each topic t in T

13. re-estimate P (t)
14. for each entity e in E
15. re-estimate P (e|t)
16. for each word w in W
17. re-estimate P (w|t)
18. for each column c in C
19. re-estimate P (c)

Figure 4: The basic EM algorithm

P (w|ti = x) =

∑N

i=1 n(i, w)P (ti = x|ai, wi)∑
w∈W

∑N

i=1 n(i, w)P (ti = x|ai, wi)

P (ei|ti) =

∑N

i=1 P (ti, ei|ai, wi)∑
e∈E

∑N

i=1 P (ti, ei|ai, wi)

P (c) =

∑N

i=1

∑n

j=1 P (cij = c|ai, w)
∑

c∈C

∑N

i=1

∑n

j=1 P (cij = c|ai, w)

In order to do these updates, we need the posterior prob-
abilities of the hidden variables computed for each docu-
ment. They can be computed in a straight forward manner
by marginalizing over the joint distribution:

P (ti, ei, ci|ai, wi, Θ) = P (ti, ei, ci, ai, wi|Θ)/P (ai, wi)

where P (ai, wi) =
∑

t

∑
e

∑
c
P (ti = t, ei = e, ci = c, ai, wi)

P (ti|ai, wi) =
∑

e

∑

c

P (ti, ei = e, ci = c|ai, wi)

P (ci|ai, wi) =
∑

t

∑

e

P (ti = t, ei = e, ci|ai, wi)

The basic EM algorithm is described using high-level pseudo
code in Figure 4. However, it poses several scalability and
other challenges which we describe and resolve next.

Scalability Issues: We first consider the scalability issues
that arise in the E-step of the algorithm. This is clearly
brought out by lines 3-9 in Figure 4. Consider a document
d that has n attribute terms. Then this document has n+2
latent variables — t for the type, e for the entity and a c
variable for each of the n attribute terms, indicating the
column that it corresponds to. The unrestricted space of
assignments to these n+2 variables is clearly intractable. If
there are E entities in the database, T possible values for the
type column, k different columns, then there are E×T ×kn

possible value assignments to the n + 2 hidden variables for
each document. Fortunately, very few of these assignments
have non-zero posterior probability for the document. So our
aim is to identify a significantly smaller space of assignments
per document that need to be evaluated.

First, observe that the exploring the entire E×T space is
clearly not necessary. We consider domains where each en-
tity has only one value for the type column. This drastically
reduces the number of assignments for the entity and type
values to E from E × T .

We next focus on restricting the number of entities that
we need to consider for any document d. For each at-
tribute term ai in the document d, we identify the candi-
date matches for this term across the various columns of the
database using the similarity measure that has been spec-
ified for this attribute. Each candidate match for a term
ai consists of an entity index ei, a column index ci and a
score si. For example, the attribute term ‘Johnny Gray’ in a
movie review returns (director, 7395, 0.789) as a match, in-
dicating that it matches the director column of movie 7395
(which has value“Gray, John III”in the database) with score
0.789. Note that the score is determined by the similarity
measure that is employed for that attribute. The matches
for all the terms in a document allow us to identify what
assignments to the hidden entity and column values are rele-
vant for this document. We extract the set of all entities that
occur in a candidate match for at least one term in the doc-
ument. These form the set of candidate entities eCand(d)
for the document.

Now, we look at the column assignment space for attribute
terms. For each entity e in eCand(d), clearly not all at-
tribute terms in document d can map to all columns for e.
From the candidate matches for each term ai, we find the
columns that are matched by this term for entity e. Po-
tentially, there can be multiple such columns for the same
entity. The term ‘Bergman’ in a review matches the di-
rector ‘Ingmar Bergman’, the writer ‘Ingmar Bergman’ and
the actress ‘Ingrid Bergman’ columns for the Swedish movie
‘Höstsonaten’. But barring such few and exceptional cases, a
term matches at most one column for any entity. So if we get
a maximum of emax entities in the candidate set eCand(d)
for any document, then we have reduced E×T ×kn possible
assignments to a maximum of emax assignments to evaluate.
Note that emax is a significantly smaller number than E, and
grows extremely slowly with increasing number of entities in
the database.

Initialization: Initialization is a critical issue to avoid lo-
cal maxima in EM. While initializing all probabilities uni-
formly is an option, it usually does not work very well. We
make use of the candidate matches for attribute terms and
their corresponding scores for model initialization. Instead
of first initializing the parameters, we first initialize the pos-
teriors using the candidate match scores, and then take es-
timates of the parameters from the initial posteriors. For
each entity e in eCand(d) described above, we compute
its score for the document d by summing over its scores
from each attribute term a in the document: score(e, d) =∑

a∈d.A
maxc score(e, a, c). The candidate matches provide

us with score(e, a, c), and for each attribute term, we take
the maximum contribution towards each entity over all its
column matches. Then the initial entity posteriors are com-
puted by normalization:

Pinit(e|d) = score(e, d)/
∑

e∈eCand(d)

score(e, d) (2)

These initial estimates do not consider the words in the doc-
ument, and as such, serve as a baseline for comparison with

our joint model. We score the columns for each document
using the candidate matches in a similar way, and them nor-
malize them to compute the column marginals Pinit(c|d). To
compute the marginals over type values, we uniformly dis-
tribute the posterior for each entity over all its corresponding
type values, and then appropriately normalize to compute
Pinit(t|d) and Pinit(t, e|d). For the words, we score words
and type values via the documents that contain the words,
as score(w, t, d) = P (t|d)n(w, d) , where n(d, w) is the num-
ber of occurrences of word w in document d. Normalizing
the scores provides initial estimates for Pinit(w, t|d). Start-
ing from these estimates for the document posteriors, we get
initial estimates for the model parameters.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate entity identification and doc-

ument categorization performance of our model over dif-
ferent datasets and compare against state-of-the art base-
lines for both tasks. We have developed this model in a re-
search engagement in a Customer Relationship Management
(CRM) setting in a leading financial institution. Our huge
unstructured document collection consisted of customer e-
mails and agent call logs (summaries of interactions between
customers and agents) from the financial institution’s con-
tact (call) center. The back-end structured data warehouse
of customers, accounts and transaction details spans over
10 relations and 150 columns. We addressed the task of
identifying the customer entity for each call log or email,
and also categorizing the documents according to customer
demographics, and the type of financial instrument such as
credit card, debit card, savings or salary account used by
them. We were able to achieve very good performance over
both tasks inspite of very noisy textual data. But, owing to
the confidential nature of this data, we are unable to publish
the experimental details for it. As a shareable and repeat-
able alternative, we consider the IMDB dataset and focus on
the tasks of identifying movies from reviews and categoriz-
ing reviews according to the movie genre. Additionally, to
gain further insight into the performance of our model, and
investigate how our results can generalize to datasets from
other domains, we perform experiments on semi-synthetic
data, where we can control data characteristics that influ-
ence performance of our model. Processed versions of the
IMDB dataset used in our experiments are made available
for download3 as per repeatability guidelines.

5.1 Compared Approaches
We now describe the various baselines for the entity iden-

tification and document categorization tasks, and their pa-
rameters.
Document Classification Baseline: We use a state-of-
the-art document classification baseline that makes use of
all tokens in the review. We combine the attribute terms
and the unstructured words in a review to create a bag-of-
words for the classifier to use. We use linear-kernel SVMs
(SVMLight4) with default parameters We denote this as
DC-Base).

Entity Identification Baseline: We use as our entity
identification baseline the approach outlined in Eq. (2). This
is in line with state-of-the-art entity identification techniques

3
http://www.godbole.net/shantanu/work/kdd08rep.html

4http://svmlight.joachims.org/

[5] when applied to single tables. Recall that this only makes
use of the attribute terms in the document and the candi-
date matches for them. It does not make use of the list of
unstructured words in the document. It does not involve
any tunable parameters. We denote this is EI-Base.

Joint Model: This is our joint model described in this
paper. We denote this as JM. One very desirable aspect of
the model is that, like the baseline above, it does not involve
any tunable parameters. We run at most 4 EM iterations,
since loglikelihood mostly stabilizes by then.

For the entity identification task, in addition to accuracy,
we also consider average decision entropy as a metric. For
any document having k entity choices, we measure decision

entropy for it as −
∑k

i=1 P (ei|d) log P (ei|d), where P (ei|d) is
the predicted probability for entity ei. For any entity identi-
fication approach, we can then take the average over decision

entropy for all documents as a performance measure.

5.2 Experiments on the IMDB dataset
The IMDB dataset5 consists of movies, actors, actresses,

directors and writers lists, among other details. To create
our unstructured document collection, we crawled the IMDB
site and downloaded the first 10 reviews (user comments) for
the top 50 movies for 25 IMDB genres. This led to 12, 500
reviews in all. On the structured side, we created a sin-
gle movie table containing movie details with 6 columns for
Actor1, Actor2, Actress1, Actress2, Director1, Director2,
Writer1 and Writer2. We use the actor rank information
available in IMDB to populate the 2 actor (and actress)
columns with the top 2 actors and actresses for the movie.
No ranking being available for directors and writers, we pick
the first two that are listed for the movie. Note that in or-
der to make the entity identification task challenging, we
do not include the movie name as a column. We populated
this movie table with the top 1250 movies from the 25 gen-
res. Additionally, we added 25, 000 randomly drawn movies
from IMDB spanning all 25 genres. This resulted in a to-
tal of 26, 250 movies in our structured database. One issue
with the IMDB dataset is that each movie is associated with
multiple genres. We get around this issue by randomly pick-
ing one of the genres for each movie and repeating this over
several runs for all experiments.

Pre-processing: Each review document was processed to
obtain its list of unstructured words and the list of attribute
terms and their corresponding column matches in the database.
The list of unstructured words is found simply by removing
stop-words from the document. To find the attribute terms
from the document, we need to annotate mentions of ac-
tors, actresses, directors and writers from movie reviews.
We use a state-of-the-art rule-based named entity annotator
[18] to annotate all person names. For this, we added a set of
regular-expression based rules that uses capitalization pat-
terns combined with First and Last Name dictionaries. To
ensure high recall, we configured the dictionaries by adding
all the first and last names of actors, actresses, directors and
writers in the IMDB database.

Next, we compute the candidate matches for each at-
tribute term that we extracted by matching against the six
‘person name’ columns in our database. As already men-
tioned, we need to account for name variations and spelling

5
http://www.imdb.com/interfaces

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

% Training Data

D
oc

 C
at

 A
cc

ur
ac

y

DC-Base
JM

Figure 5: Doc categorization accuracy on IMDB

mistakes. Therefore, we need to perform similarity match-
ing between attribute terms and database values. We experi-
mented with various string similarity measures from the Sec-
ondString package6. In our final experiments, we used the
Soft-TFIDF measure coupled with the Jaro-Winkler metric.
We built a wrapper around it to handle initializations, etc.
for names. To address similarity matching in a scalable fash-
ion, we indexed database names using first and last name
tokens. This helps in quickly looking up candidate matches
from the database for each attribute term. We then compute
the similarity scores for these pairs.

JM Acc EI-Base Acc JM Entropy EI-Base Entropy
40.8% 38.5% 0.067 2.359

Table 1: Ent Identification Performance for IMDB

Results for IMDB: We plot the results of our experiments
on the IMDB dataset in Figure 5 and Table 1. First, in Fig-
ure 5, we compare document categorization accuracy of JM
against that achieved from the SVM baseline (DC-Base).
Here we measure SVM accuracy on a separate held out set
containing 20% of the reviews. On the X-axis, we vary the
amount of training data provided for training. Of course,
JM being unsupervised, it’s accuracy remains constant. Ob-
serve that the supervised baseline catches up with JM only
when it is provided with ∼ 35% of the document collec-
tion as training samples. For JM, this ‘supervision’ comes
for free via automatic identification of entities for the doc-
uments. As an added benefit, there are gains on the entity
identification side as well, as can be seen from Table 1. We
can see that JM improves entity identification performance
over the baseline from 38.5% to 40.8% in terms of accuracy.
But this is not the complete picture. For documents where
JM is not able to correctly nail down the right entity, it is
nevertheless greatly successful in reducing the confusion over
the possible choices. This can be seen by comparing the the
average decision entropy over candidate entities, which is re-
duced to 0.067 for JM from 2.359 for the baseline. Much of
this improvement is made possible by correctly inferring the
type value (genre) for the movie entity, though the actual
movie could not be identified. Note that this is in perfect
agreement with the intuition that we formalized at the end
of Section 3.

Though JM shows some improvement in entity identifica-
tion for IMDB, it is greatly below our expectation. This is
in part because enough matches could not be found for the

6
http://secondstring.sourceforge.net/

attribute terms in the documents. Recall that our back-end
movie database does not have the names of the movies, and
only contains names of the two actors and actresses, direc-
tors and writers. It is quite challenging to identify movies
based on just this information, as the baseline performance
shows. We expected JM to improve over this by correctly
identifying the genres based on the words in the reviews. But
the multiple genres originally associated with each movie
turns out to be a big hindrance for this. Recall that for each
run, we randomly picked one genre for the movie. (Numbers
reported in Figure 5 and Table 1 are averaged over 10 runs)
This results in significant overlap across genres in terms of
words, and makes genre identification very challenging for
JM. Note that DC-Base achieves only ∼ 65% accuracy, even
after using all the training data.

In summary, IMDB satisfies our motivational setting where
words are related to column values in the database, but is
not a perfect fit because of the multiple genre values asso-
ciated with each movie. Unfortunately, the enterprise data
that we worked on cannot be publicly disclosed, and we are
not aware of publicly available data that has both the struc-
tured component and unstructured documents labeled with
structured entities (that we need for evaluation). As a viable
alternative, we experimented on semi-synthetic data, where
we can control the degree of overlap between different cate-
gories and evaluate our model under different settings. This
also provides insights into how our model is expected to
perform in domains with varying characteristics. Next, we
describe the semi-synthetic data generation process and our
experiments on it.

5.3 Experiments on Semi-Synthetic Data
In our semi-synthetic data, we keep the structured movie

table untouched. Of the list of genres available for each
movie, we randomly pick one in each run of the experiment,
as before. On the unstructured side, we re-create the docu-
ments in two stages. First, we artificially partition the words
in our vocabulary between the genres with different degrees
of overlap. This is achieved using an overlap probability
po. Each word in the vocabulary is first assigned to one ran-
domly chosen genre from the list. Additionally, it is assigned
to each of the remaining genres with probability po. Clearly,
higher values of po result in the same word belonging to more
genres, leading to less separability between genres. For each
genre, we assume all words assigned to it to be equally likely.
Once the words have been assigned to genres, we re-create
the reviews in our collection. For each review, we keep the
n attribute terms untouched. We replace the m original un-
structured words with m words sampled uniformly from the
genre of the corresponding movie. Effectively, only the un-
structured words in each review are replaced by new words.
Everything else stays exactly the same as before.

In our experiments on semi-synthetic data, we vary the de-
gree of overlap between the words assigned to different gen-
res, and analyze the performance of JM. We first consider
the entity identification results plotted in Figure 6(a). We
can see that for very high overlap among the words in differ-
ent genres, improvement in entity identification performance
over the baseline is minimal. This mirrors the original IMDB
scenario, where the words do not have enough information
for genres to be correctly assigned to reviews. However, as
the words begin to get spread out more clearly between gen-
res, entity identification performance improves significantly.

0

0.2

0.4

0.6

0.8

1

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Genre overlap p 0

E
nt

ity
 Id

 a
cc

ur
ac

y

JM

EI-Base

(a)

0

0.2

0.4

0.6

0.8

1

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Genre overlap p 0

D
oc

 C
at

 A
cc

ur
ac

y

JM

DC-Base

(b)

Figure 6: (a) Entity Identification and (b) Docu-
ment Categorization results on semi-synthetic data

In fact, it increases by as much as 55.8% when words have
medium overlap (from 38.5% to 60% for po = 0.6), and by
80.3% (from 38.5% to 69.4% for po = 0.1) when they are
clearly indicative of the genre. This clearly underlines the
huge potential that categorization using words lends to en-
tity identification. In Figure 6(b), we compare the document
categorization performance of JM against that of DC-Base.
Baseline performance also naturally improves when words
are better separated between genres, but the crux is that
document categorization happens for free in JM, where as
80% training data is used for the baseline. Most interest-
ingly, for large overlap between genres, JM actually outper-

forms the baseline in categorizing documents by leveraging
attribute matches with the structured database. This is pre-
cisely the mutual reinforcement that we had expected from
the model. We had explained this intuitively at the end of
Section 3, and these empirical results lend further credence
to our claims. In summary, these experiments clearly show
that the two tasks can benefit each other immensely when
conditions are favorable, which we believe happens naturally
for many enterprise tasks.

6. RELATED WORK
One related body of work looks at integrating data across

different structured data sources[17]. Several rule based and
learning based techniques have been proposed for schema

matching[14] that aims at matching related schema, and en-
tity resolution/deduplication/tuple matching [9, 20, 1] that
focuses on matching individual duplicate records in databases.
Some effort has also gone into integrating information across
unstructured resources[12, 13]. There has been some re-
cent research on identifying structured entities from unstruc-
tured documents using pre-defined contexts[5]. However,
the words in the documents that do not match against the
database are ignored. In contrast, our goal is to use the

unstructured words in the document in addition to the at-
tribute terms to identify structured entities.

One way to deal with the issue of labeled data is unsu-
pervised clustering using generative models. Topic mixture
models of increasing complexity have been proposed for doc-
uments over the years [15, 10, 2]. In comparison, we use a
relatively simple model for the unstructured words in the
document. It will be interesting to investigate if more com-
plex mixture models can bring further improvements for en-
tity identification. Also, all these generative models consider
only unstructured words in documents, whereas we look to
generate noisy entity mentions as well. The PRM frame-
work [8] is a probabilistic generative model over values in
a structured database that takes into account dependencies
across different columns. Our focus is on documents that
mention these values rather than the back-end data itself.

At a high level, the idea of using information or knowl-

edge from one learning task to help another has been used in
various forms. Semi-supervised methods are the most popu-
lar among approaches that bootstrap learning on insufficient
labeled data by exploiting abundance of unlabeled data[16].
Co-training in multi-view learning [3] uses two independent
feature partitions (views) on the same label-set and train-
ing data. The goal is to iteratively add training data to
one classification task and re-learn models using the current
labeling from the other. In co-clustering[6], two clustering
tasks reinforce each other. More specifically, co-clustering
looks to simultaneously cluster instance rows and feature
columns by iteratively transferring knowledge from the rows
to the columns (and vice-versa). Cross-training[19] exploits
mappings between classes across related but non-identical
classification tasks to overcome lack of training data in any
individual task. Multi-task learning aims to improve gener-
alization for a learning task by using higher order domain
knowledge from related tasks. It has been used for cluster-
ing[21] where similarity measures are tweaked according to
those in related clustering tasks, and in neural networks[4].

Our proposed model for joint entity identification and
document categorization is similar in spirit, but unique in
that we combine two hitherto unrelated tasks. We show
how structured entity identification can benefit from un-
structured words in documents via document categoriza-
tion. Conversely, we also perform document categorization
without an explicit label-set or training data where mapping
documents to entities implicitly provides supervision via the
column values in the database.

7. CONCLUSIONS
In summary, we have considered two critical tasks over

document collections, namely entity identification and doc-
ument categorization. We have observed that the two tasks
can be related naturally in many domains so that they can
mutually benefit each other. We have explored different
ways to formally relate the two tasks and proposed, as a
solution, a probabilistic model for documents that generates
both entity mentions and unstructured words. We demon-
strated that this model not only competes with supervised
document classification approaches, but can also improve
entity identification accuracy immensely in many scenarios.
We believe that this paper will open up new directions of
research in integration and analysis over unstructured doc-
ument collections.

8. REFERENCES
[1] I. Bhattacharya and L. Getoor. Collective entity

resolution in relational data. ACM TKDD, 1(1),
March 2007.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. Journal of Machine Learning

Research, 3, 2003.

[3] A. Blum and T. Mitchell. Combining labeled and
unlabeled data with co-training. In COLT, 1998.

[4] R. Caruana. Multitask learning. Machine Learning,
28(1), 1997.

[5] V. T. Chakaravarthy, H. Gupta, P. Roy, and
M. Mohania. Efficiently linking text documents with
relevant structured information. In VLDB, 2006.

[6] I. S. Dhillon. Co-clustering documents and words
using bipartite spectral graph partitioning. In
SIGKDD, 2001.

[7] X. Dong, A. Halevy, and J. Madhavan. Reference
reconciliation in complex information spaces. In
SIGMOD, 2005.

[8] L. Getoor, N. Friedman, D. Koller, and B. Taskar.
Learning probabilistic models of link structure.
Journal of Machine Learning Research, 3:679–707,
2003.

[9] M. Hernández and S. Stolfo. The merge/purge
problem for large databases. In SIGMOD, 1995.

[10] T. Hofmann. Probabilistic latent semantic indexing. In
SIGIR, 1999.

[11] T. Joachims. Text categorization with support vector
machines: learning with many relevant features. In
ECML, 1998.

[12] X. Li, P. Morie, and D. Roth. Semantic integration in
text: from ambiguous names to identifiable entities.
AI Mag., 26(1), 2005.

[13] A. McCallum and B. Wellner. Conditional models of
identity uncertainty with application to noun
coreference. In NIPS, 2004.

[14] R. E. Melnik S., Garcia-Molina H. Similarity flooding:
A versatile graph matching algorithm and its
application to schema matching. In ICDE, 2002.

[15] K. Nigam, A. K. McCallum, S. Thrun, and
T. Mitchell. Text classification from labeled and
unlabeled documents using em. Machine Learning,
39(2-3), 2000.

[16] K. Nigam, A. K. McCallum, S. Thrun, and T. M.
Mitchell. Text classification from labeled and
unlabeled documents using EM. Machine Learning,
39(2/3), 2000.

[17] B. P. A. Rahm Erhard. On matching schemas
automatically. In VLDB Journal, volume 10(4), 2001.

[18] G. Ramakrishnan. Bridging chasms in text mining

through Word and Entity Associations. PhD thesis,
IIT Bombay, 2005.

[19] S. Sarawagi, S. Chakrabarti, and S. Godbole.
Cross-training: Exploiting probabilistic mappings
between topics. In SIGKDD, 2003.

[20] P. Singla and P. Domingos. Object identification with
attribute-mediated dependences. In PKDD, 2005.

[21] S. Thrun and J. O’Sullivan. Discovering structure in
multiple learning tasks: The tc algorithm. In ICML,
1996.

