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Abstract. Effective incorporation of human expertise, while exerting
a low cognitive load, is a critical aspect of real-life text classification
applications that is not adequately addressed by batch-supervised high-
accuracy learners. Standard text classifiers are supervised in only one
way: assigning labels to whole documents. They are thus deprived of the
enormous wisdom that humans carry about the significance of words and
phrases in context. We present HIClass, an interactive and exploratory
labeling package that actively collects user opinion on feature represen-
tations and choices, as well as whole-document labels, while minimizing
redundancy in the input sought. Preliminary experience suggests that,
starting with essentially an unlabeled corpus, very little cognitive labor
suffices to set up a labeled collection on which standard classifiers per-
form well.

1 Introduction

Motivated by applications like spam filtering, e-mail routing, Web directory
maintenance, and news filtering, text classification has been researched exten-
sively in recent years [1–3]. State-of-the-art classifiers now achieve up to 90%
accuracy on well-known benchmarks. Almost all machine learning text classifi-
cation research assumes some fixed, simple class of feature representation (such
as bag-of-words), and at least a partially labeled corpus. Statistical learners also
depend on the deployment scenario to be reasonably related to the training
population.

Many of these assumptions do not hold in real-life applications. Discrimina-
tion between labels can be difficult unless features are engineered and selected
with extensive human knowledge. Often, there is no labeled collection to start
with. In fact, even the label set may not be specified up front, and must evolve
with the user’s understanding of the application. Several projects reported at the
annual Operational Text Classification workshops [4] describe applications span-
ning law, journalism, libraries and scholarly publications in which automated,
batch-mode techniques were not satisfactory; substantial human involvement was
required before a suitable feature set, label system, labeled corpus, rule base, and
resulting system accuracy were attained. However, not all the techniques used



in commercial systems are publicly known, and few general principles can be
derived from these systems.

There is much scope for building machine learning tools which engage the user
in an active dialog to acquire human knowledge about features and document
labels. When such supervision is available only as label assignments, active learn-
ing has provided some clear principles [5–7] and strategies for maximum payoffs
from the dialog. We wish to extend the active learning paradigm significantly to
include both feature engineering and document labeling conversations, exploit-
ing rapidly increasing computing power to give the user immediate feedback on
her choices.

Our contributions: In this paper we present the design of a system HIClass (Hy-
per Interactive text Classification) for providing this tight interaction loop. We
extend SVMs to naturally absorb human inputs in the form of feature engineer-
ing, term inclusion/exclusion and term and document labels. In the past, such
actions were performed through ad hoc means and as a distinct processing step
before classification construction. We make these more effective by (1) providing
the user easy access to a rich variety of summaries about the learnt model, the
input data and aggregate performance measures, (2) drawing the user’s attention
to terms, classes or documents in greatest need of inspection, and (3) helping
the user assess the effect of every choice on the performance of the system on
test data.

Outline: We describe the HIClass workbench in Section 2 and review the design
choices and various modes of user interaction. Section 3 describes our method
of active learning on documents with modifications to handle multi-labeled data
and methods to reduce the cognitive load on the user. Section 4 introduces the
idea of active learning on terms treating them as first class entities. We report
our experiences with the workbench and experimental results in Section 5. We
review related work in Section 6 and conclude in Section 7.

2 The HIClass workbench for text classification

We present an overview of HIClass in Fig. 1. The lower layer shows the main data
entities and the main processing units. There is a small pool of labeled documents
(partitioned by sampling into a training and test set) and a large unlabeled pool.
The feature extractor turns documents into feature vectors. Features are usually
words, but the user can interactively refine features to be more complex; this
is described next. The system can store and access by name multiple classifiers
with their fitted parameters at any given time, assisting comparative analysis of
parameters, performance on held-out data, and drill-down error diagnostics. The
upper layer shows the prominent menus/modes in which a user can interact with
the system. Next we describe the important building blocks shown in Fig. 1.



Fig. 1. The architecture of HIClass

2.1 Document and classification models

The first step of the design of HIClass is to choose a flexible classification model
that (1) suits state-of-the-art automated learners and (2) can be easily inter-
preted and tuned by the user.

A document is a bag of features. Usually, features are words after minor
processing like stemming and case-normalization. But the user can also (dy-
namically) define features to reflect domain knowledge. E.g., month names or
currency names may be conflated into synthetic features. On the other hand,
the user may notice harmful conflation between “blood bank” and “bank”, and
define “blood bank” as a single compound feature. We will continue to use term,
word and feature interchangeably where no confusion can result. Documents are
represented as unit vectors.

Labeled documents can be associated with more than one class in general.
HIClass supports linear additive classifier models, where each class c is as-
sociated with a set of weights wc

1, . . . w
c
T corresponding to the T terms in a

vocabulary. Each document is represented by a vector of non-negative weights
x = (x1, . . . , xT ), each component corresponding to a feature. The classifier as-
signs a document all class labels c for which wc · x + bc ≥ 0 where bc is a scalar
per-class bias parameter. As documents vectors have only non-negative compo-
nents, both magnitude and sign of components of wc give natural interpretations
of salience of terms.

The linear additive model generalizes a number of widely-used classifiers,
including naive Bayes (NB), maximum entropy, logistic regression, and support
vector machines (SVMs). Here we focus on SVMs. Given documents di with
labels yi ∈ {−1,+1}, a two-class linear SVM finds a vector w and a scalar
constant b, such that for all documents yi(wc ·di+b) ≥ 1, and ||wc|| is minimized.

When the application demands more than two classes, one can (1) rewrite the
above optimization slightly, with one w vector per class, so that the discriminant
wcj

· di + bj is largest for the correct class cj ; or (2) build an ensemble of SVMs,
each playing off one class against another (“one-vs-one”), and assigning the
document to the class that wins the largest number of matches; or (3) build



an ensemble of SVMs, as many as there are classes, each predicting an yes/no
label for its corresponding class (“one-vs-rest” or “one-vs-others”). In practice,
all these approaches are comparable in accuracy [8]. We use one-vs-others as it
is easily extended to make multi-labeled prediction and is efficient.

2.2 Exploration of data, model, performance summaries

HIClass provides support for viewing the trained classifier scores, aggregate as
well as drill-down statistics about terms, documents and classes, and standard
accuracy measures. Aggregate statistics like per-class population, similarity dis-
tribution, and uncertainty distribution can be viewed.

After building an initial classifier using the starting labeled set L, the user
can view the learnt model as a matrix of class-by-term scores. Simple inspection
of term-class scores in an OLAP-like tool enables the expert to propose changes
to per-class classification models like including and excluding certain terms. The
user-interface allows easy movement from a term-centric to a class-centric anal-
ysis where the user can see documents with terms indicative of belongingness to
classes.

With every proposed change, the user can study the impact of the change by
observing its performance on the test data. The user can inspect graphs for the
accuracy and F1 of the whole system or for individual classes across iterations.
The user can identify classes which hamper the overall performance of the system
and can concentrate on them further by adding more labeled documents or fine
tuning important relevant terms. The user can also inspect a confusion matrix
between any two classes that reveals their overlap, allowing the user to inspect
and tune discriminating terms by inspecting the results of a binary SVM on the
classes.

2.3 Feature Engineering

Fast evaluation over a variety of test data enables a user to easily identify limi-
tations of a trained model and perhaps the associated feature set. Most users, on
inspection of this set of scores, will be able to propose a number of modifications
to the classifiers. Some of these modifications may not impact performance on
the available test set but could be beneficial in improving the robustness and
performance of the classifier in the long term. For the Reuters dataset, close
inspection of some of the terms shown to have a high positive weight for the
class crude reveals:

– “Reagan” is found to be a positive indicator of the class crude though proper
names should be identified and treated differently.

– “Ecuador” and “Ecuadorean” reveal insufficient stemming.
– “World bank” and “Buenos Aires” should always occur together as a bi-

gram; “Union”, a high weight term for crude, should be associated with
“Pacific Union” in crude, but as “Soviet Union” in other classes.

– Month names, currencies, date formats, proper nouns should be recognized
and grouped into appropriate aggregate features.



2.4 Document labeling assistant

When unlabeled data is abundant and labeled data is limited, a user can choose
to add labels to some of the unlabeled documents. Active learning has proven
to be highly effective in interactively choosing documents for labeling so that
the total number of documents to be labeled is minimized. HIClass provides
a number of mechanisms to lighten the user’s cognitive load in the document
labeling process. Details of appear in Section 3.

2.5 Term-level active learning

The high accuracy of linear SVMs at text classification [1] suggests that class
membership decision depends on the combination of “soft” evidence from a class-
conditional subset of the corpus vocabulary. E.g., high rate of occurrence of
one or more of the words wicket, run, stump, and ball leads us to believe a
document is about (the game) cricket. Given enough training documents, good
classifiers can learn the importance of these terms. However, in the initial stages
of bootstrapping a labeled corpus, it is far more natural for the user to directly
specify these important features as being positively associated with the class
“cricket”, rather than scan and label long documents containing these words.

HIClass allows users to label terms with classes just like documents. We
expect the cognitive load of labeling terms to be lower because the user does not
have to waste time reading long documents. We help the user in spotting such
terms by doing active learning on terms. This is elaborated in Section 4.

3 Active labeling of documents

The system starts with a small training pool of labeled documents L and a large
pool of unlabeled documents U . Assume that the number of class labels is k and
each document can be assigned multiple labels. We train k one-vs-others SVMs
on L. Our goal during active learning is to pick some unlabeled documents about
whose predictions the classifier is most uncertain. Various measures are used for
calculating uncertainty with SVMs [6]. However, these assume binary, single-
labeled documents. We extend these to the multi-class, multi-labeled setting as
described next.

3.1 Uncertainty

Each unlabeled document gets k discriminant values, one from each SVM in
the one-vs-others ensemble. We arrange these values on the number line, and
find the largest gap between adjacent values. A reasonable policy for multilabel
classification using one-vs-others SVMs is that discriminant values to the right
of the gap (larger values) correspond to SVMs that should be assigned a positive
label to the document and the rest should be negative.

We need this policy because, in our experience with one-vs-others ensembles,
as many as 30% of documents may be labeled negative by all members of the



ensemble. For single label classification, it is common to pick the maximum
discriminant even if it is negative. Our policy may be regarded as an extension
of this heuristic to predict multiple labels.

With this policy, we declare that document to be most uncertain whose this
largest gap is the smallest among all documents. When documents are restricted
to have one label, this reduces to defining certainty (confidence) in terms of the
gap between the highest scoring and the second highest scoring class.

3.2 Bulk-labeling

The user could label these uncertain documents one by one. But experience
suggests that we can do better: often, many of these document are quite similar,
and if we could present tight clusters that the user can label all at once, we can
reduce the cognitive load on the user and speed up the interaction.

We pick the u most uncertain documents and compute pairwise vector-space
similarity between documents in the uncertain set, and prepare for the user a
cluster/subset of fixed size (set by the parameter s) that has the largest sum of
pairwise similarities.

When showing these uncertain clusters to the user, we also provide an ordered
list of suggested labels. The ordering is created by taking the centroid of each
uncertain cluster and finding its similarity to the k centroids of positive training
data of the k classes. Fig. 2 summarizes the active bulk-labeling process for
documents.

Start with a labeled pool L and an unlabeled pool U .
while user wants to continue with active labeling do

Train a A-vs-notA SVM ensemble on T
Calculate uncertainty on all documents in U :
for all documents d ∈ U do

Get k scores by applying the k SVMs to d. Find the largest gap in score
values.

end for
Sort the |U | gaps in ascending order and add top u to the uncertain set.
Select the s most similar documents from top u
Suggesting ranked list of labels for the group s:
for all k classes do

Find similarity between centroid of s and centroid of positive training data of
class k

end for
Sort these distances in a suggested list of classes
Present s and the ranked list of k suggestions to the user for active labeling
Accept multi-labeled suggestions for all documents in s. Check for conflicts
Add these s documents to L with user provided labels and remove from U

end while

Fig. 2. The algorithm for active learning on documents



(An alternative is to use the existing classifier itself to propose suggestions
based on the confidence with which the documents in the uncertain cluster are
classified into various classes. However, we feel keeping the same suggestion list
for all documents in each uncertain cluster reduces the cognitive load on the user.
Also, empirically we found in the initial stages this provides better suggestion
than the SVMs.)

The user provides feedback to the system by labeling all documents in an
uncertain cluster in one shot. The labeled documents are inspected by a conflict
check module for consistency. We defer discussion of this topic due to lack of
space. Once the user confirms the labels, the newly labeled documents are re-
moved from U and added to L. The system then iterates back to re-training the
SVM ensemble.

4 Active learning involving terms

As mentioned in Section 2.5, users generally find it easier to bootstrap the labeled
set using trigger terms (that they already know) rather than tediously scrutinize
lengthy documents for known triggers. We demonstrate this with an example
from the Reuters dataset. We trained two SVMs using the interest class in
Reuters; the first trained with a single document per class and the second trained
with 50 documents per class. For each SVM, we report some terms corresponding
to the maximum positive weights in the table. The SVM using more data contains
terms like “rate” “fe” (foreign exchange), “pct” (percent), and “interest”: that
a user can readily recognize as being positively associated with the label interest
that are missing from the first SVM.

Num labeled=1 Num labeled=50

Term w Term w

forecast 0.40 rate 2.08
bank 0.29 fe 1.97
noon 0.20 pct 1.65
account 0.20 market 1.26
oper 0.14 custom 1.01
market 0.14 interest 0.92
england 0.09 forecast 0.92

stg 0.87
bank 0.83

We allow a direct process of proposing trigger terms within the additive linear
framework. We believe such manual addition of terms will be most useful in the
initial phases to bootstrap a starting classifier which is subsequently strength-
ened using document-level active learning. We propose a mechanism analogous
to active learning on documents to help a user spot such terms. SVMs treat la-
beled terms as mini-documents whose vector representation has a 1 at the term’s
position and 0 everywhere else, resulting in standard unit length document vec-
tors.



We develop a criterion for term active learning that is based on the theo-
retically optimum criterion of minimizing uncertainty on the unlabeled set but
avoids the exhaustive approach required to implement it [5–7] by exploiting the
special nature of single-term documents.

Consider adding a term t whose current weight is wt in the trained SVM.
For terms not in any of the labeled documents wt = 0. Suppose we add t as
a “mini-document” with the user-assigned label yt. Let the new SVM weight
vector be w′. Since the term t is a mini-document whose vector has xt = 1 and
∀t′ 6= t, xt′ = 0, we can assume that in the new w′ only wt is changed to a new
w′

t and no other wt′ is affected significantly. This is particularly true for terms
that do not already appear in the labeled set. From the formulation of SVMs,
yt(w′

t + b) ≥ 1.
If the current wt is such that |wt + b| ≥ 1 then adding t will probably not

have any affect. So we consider only those ts where |wt + b| < 1. Adding t with a
label +1 will enforce w′

t+b = 1 i.e., w′
t = 1−b and with a label of −1 will make it

w′
t = −1− b. For each possible value of yt = c, we get a new value of w′

t(c). Thus
we can directly compute the new uncertainty of each unlabeled document x by
computing the change in the distance from separator value as (w′

t(c)−wt)xt, since
uncertainty is inversely proportional to distance from the separator. Let Pr(c, t)
be the probability that the term t will be assigned to class c, as our weighing
factor. We estimate Pr(c, t) by the fraction of documents containing term t
which have been predicted to belong to class c. We then compute the weighted
uncertainty WU(t) for a term t as WU(t) =

∑
c U(c, t)Pr(c, t) and then select

the term with the smallest WU(t) for labeling. Other details and approximate
variants can be found in [9]. This gives us a way to compute the total uncertainty
over the unlabeled set without retraining a SVM for each candidate term.

5 Experimental study

We have experimented with several text classification tasks ranging from well-
established benchmarks like Reuters and 20-newsgroups to more noisy classifi-
cation tasks, like the Outdoors dataset, chosen from Web directories [11]. It is
difficult to quantify the many ways in which HIClass is useful. Therefore we pick
a few measures like the benefits of active learning with terms and document to
report as performance numbers. We also present some results which quantify
the cognitive load on the user and try to show how HIClass eases the user’s
interaction and labeling process.

HIClass consists of roughly 5000 lines of C++ code for the backend and
1000 lines of PHP scripts to manage frontend user interactions. The frontend
is a web browser, readily available on any user’s desktop. XML is used to pass
messages between the frontend and the server backend. LibSVM [12] is used as
the underlying SVM classifier.

All our development and experiments were done on a dual-processor P3 server
running Debian Linux and with 2GB RAM. Due to space limitations we report
numbers for fixed settings of some of our system parameters. Further experiments



can be found in [9]. Unless otherwise stated, the number of initial documents
per class is set to 1, the number of documents selected for bulk labeling is 5
and the number of uncertain documents over which we pick similar clusters (the
parameter u of Section 3) is set to 75.

Fig. 3. Reuters - Micro and Macro-averaged F1 on held-out test data while increasing
training set size, randomly versus using document level active learning.

5.1 Document-level active learning

We now show how active learning on documents can reduce the number of doc-
uments for which the user needs to provide labels in a multiclass, multi-labeled
settting. We started with one document in each class and added 5 documents
in each round. All graphs are averaged over 30 random runs. Fig. 3 compares
the micro and macro averaged F1, of selecting 5 documents per round using ac-
tive learning and using random selection for Reuters (similar results with other
datasets omitted due to lack of space). We see that active learning outperforms
randomly adding documents to L and reaches its peak F1 levels faster.

5.2 Reducing labeling effort

We next show the effectiveness of the two techniques that we proposed in Sec-
tion 3 for reducing the effort spent for labeling a document. For lack of space we
only show results with Reuters in this sub-section.

Quality of Suggestions We quantify the quality of suggestions provided to
the user by the average rank of the true labels in the suggested list. We see in
Figure 4 that even in the initial stages of active learning the true classes on an
average are within rank 4 whereas the total number of possible classes is 20 for
this dataset. We also see that the suggestions with u fixed at 75 are better than
at 10 as expected.



Fig. 4. Reuters - Quality of suggestion
measured as the rank at which correct la-
bels are found in the suggested labels

Fig. 5. Reuters - Benefits of bulk-labeling
measured as inverse similarity defined in
section 5.2

Bulk-labeling We quantify the benefit of bulk-labeling by measuring inverse
similarity, defined as the number of true distinct labels in a batch of s docu-
ments as a fraction of the total number of document-label pairs in the batch.
So, if s = 5 and each document in a batch has one label and all of them are the
same, then the inverse similarity is 1

5 .
It is reasonable to assume that the cognitive load of labeling is proportional

to the number of distinct labels that the user has to assign. Thus, Fig. 5 es-
tablishes that our chosen set of similar documents reduce cognitive load by a
factor of 2. The benefits are higher in the initial stages because then there are
several documents with high uncertainty to choose from. With higher number
of documents per batch, the benefits get larger.

We cannot set s to be very high because there is a tradeoff between reducing
effort per label by bulk labeling similar documents and increasing number of labels
by possibly including redundant documents per batch. If we calculated labeling
cost in terms of number of documents to be labeled, the optimum strategy is to
label the most uncertain single document per batch. But the effort the user has
to spend in deciding on the right label for rapidly changing document contexts
will be high. The right tradeoff can only be obtained through experience and
will vary with different classification tasks and also the user’s experience and
familarity with the data.

5.3 Term-level active learning

Our goal here is to evaluate the efficacy of training with labeled terms. We take
all available labeled documents for a class and train a one-vs-rest SVM for that
class. All single-term documents that are predicted as positive or negative with
very large margins (above b/3 here) are labeled with the predicted class and
the rest are not labeled. We then start with a SVM trained initially with a
single labeled document on each side and keep adding these collected labeled
terms in order of the magnitude of their weights (the AllData method). We
also evaluate the performance of our term level active learning described in 4.
However, we use an approximation algorithm which is less time-intensive and



computationally efficient. We select terms with higher values of f(t) where f(t) =
(
∑

i∈pos xit
−

∑
i∈neg xit

)∗(N−(pos−neg)(b+wt)) where N is the total number of
unlabeled documents, and pos and neg refer to number of positive and negative
unlabeled documents.

Fig. 6. Adding labeled terms in score order Reuters (left) and 20-newsgroups (right)

In Fig. 6 we show the resulting accuracy on 8 classes of Reuters and 3 classes
of the 20-newsgroups dataset. Active learning on terms clearly works as expected
though the gains are small. This is to be expected since SVMs are trained with
very few terms instead of entire documents. Random selection performs much
worse in both the datasets. This confirmed our intuition that term-level active
learning is best viewed as a bootstrapping technique followed by document-level
active learning.

6 Related Work

Most earlier work on applying active learning to text categorization [6, 10] as-
sume a single binary SVM whereas our proposed scheme is for multiple one-vs-
othersSVMs and for multi-labeled classification. Active learning has also recently
been applied to the problem of selecting missing attributes of labeled instances
whose values should be filled in by the user [13]. This is different from our setting
of term active learning because our goal is to add terms as additional labeled in-
stances. The notion of labeling terms is used in [14] for building lexicons of terms
related to a concept. So the goal there is not to assign documents to categories
but to exploit the co-occurance patterns of terms in documents to categorize
terms.

7 Conclusion

We have described HIClass, an interactive workbench for text classification which
combines the cognitive power of humans with the power of automated learners
to make statistically sound decisions. The system is based on active learning,



starting with a small pool of labeled documents and a large pool of unlabeled
documents. We introduce the novel concept of active learning on terms for text
classification. We describe our OLAP-like interface for browsing the term-class
matrix of the classifier cast as a linear additive model. The user can tune weights
of terms in classes leading to better, more understandable classifiers. HIClass pro-
vides user continuous feedback on the state of the system, drawing her attention
to classes, documents, and terms which would benefit by manual tuning.
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