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Abstract. Semi-supervised clustering models, that incorporate user provided con-
straints to yield meaningful clusters, have recently become a popular area of
research. In this paper, we propose a cluster-level semi-supervision model for
inter-active clustering. Prototype based clustering algorithms typically alternate
between updating cluster descriptions and assignment of data items to clusters.
In our model, the user provides semi-supervision directly for these two steps. As-
signment feedback re-assigns data items among existing clusters, while cluster
description feedback helps to position existing cluster centers more meaning-
fully. We argue that providing such supervision is more natural for exploratory
data mining, where the user discovers and interprets clusters as the algorithm
progresses, in comparison to the pair-wise instance level supervision model, par-
ticularly for high dimensional data such as document collection. We show how
such feedback can be interpreted as constraints and incorporated within the k-
means clustering framework. Using experimental results on multiple real-world
datasets, we show that this framework improves clustering performance signifi-
cantly beyond traditional k-means. Interestingly, when given the same number of
feedbacks from the user, the proposed framework significantly outperforms the
pair-wise supervision model.

1 Introduction

While clustering has been one of the most effective tools for exploratory data mining
for decades, it is widely accepted that the clusters generated without any supervision
often do not lead to meaningful insights for the user. Accordingly, there has been a
lot of interest in recent years in developing semi-supervised clustering models that can
accommodate supervision from the user to guide the clustering process[4]. In the most
popular model for semi-supervised clustering, the user provides must-link and cannot-
link constraints over pairs of data instances [17]. It has been shown that such constraints
can significantly improve clustering performance beyond that of unsupervised models.

An interesting feature of this instance-level model is that the constraints are in-
dependent of each other, and also of all other instances in the dataset. However, it
is straight forward to imagine example datasets, as in Figure 1, where the same pair
of instances may be ‘must-linked’ or ‘cannot-linked’ depending on the other instances
? Work done while at IBM Research - India
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Fig. 1. Cluster examples involving the same pair of instances, shown in white. Based on the other
instances in the dataset, in (a) they are must-linked to belong to the same cluster, while in (b) they
are cannot-linked.

present in the dataset. Therefore, such independent constraints required by the instance-
level model can only be provided when the human supervisor can visualize the space
of all the data instances and then decide on the desired shape of the clusters, as in most
illustrative examples for instance-level supervision [4]. Such visualization of data items
is difficult, if not impossible, in high dimensions, for example when clustering a col-
lection of text documents. A pair of documents, one on the English soccer league and
the other on the Spanish soccer league, would belong to the same cluster if the doc-
ument collection is on different types of sports, but not in a different collection that
discusses different European soccer leagues. Thus providing constraints on this pair of
documents is not possible using independent pair-wise constraints without visualizing
or understanding the document collection in its entirety.

In this paper, as an alternative we propose an interactive cluster-level semi-supervision
framework for clustering, where such conditional constraints can be provided by the hu-
man supervisor. Prototype or model based clustering algorithms typically iterate over
two steps — assignment of data points to clusters, and adjustment of clusters to mini-
mize distortion. In our model, the user provides two different types of feedback, aimed
directly at supervising these two different steps, while the algorithm executes. Using
assignment feedback, the user moves a data point from one of the current clusters to
another. Using cluster description feedback, the user modifies the feature vector of any
current cluster to make it more meaningful. Such an interactive framework is partic-
ularly useful for exploring large high-dimensional data sets when the clusters are not
known in advance. The current set of clusters provides the user with a summarized, ag-
gregated view of the entire dataset. Conditioned on this current set of clusters, and also
enabled by the summary that it provides, he then re-assigns and re-adjusts this cluster-
ing as he thinks appropriate. The algorithm learns from this feedback, and from other
feedbacks provided in earlier stages, to re-cluster the dataset, which the user can again
inspect and critique. The iterative process continues until the user is satisfied with the
clustering. The basic idea of interaction for clustering [6, 12], interpreted as pair-wise
constraints, was proposed as early as 1999, but to the best of our knowledge, there has
not been any follow-up work around cluster-level supervision to address large dimen-
sionality of the data.

We show how both these types of feedback can be interpreted as constraints and
incorporated within the k-means formulation, and the assignment and update steps can
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be modified to minimize constraint violation while maintaining low distortion error.
Though we focus on the k-means objective function for this paper, we believe that a
similar semi-supervision framework can be built around other model-based clustering
objective functions as well.

The rest of the paper is organized as follows. In Section 2, we illustrate and motivate
the two types of feedback using examples, followed by a review of related work in Sec-
tion 3. We formalize the problem in Section 4, followed by the inter-active clustering
algorithm in Section 5. Possible models for the supervisor and the issue of convergence
are discussed in Section 6, and then our experimental evaluation is described in Sec-
tion 7. We end with concluding remarks and possible future directions in Section 8.

2 Cluster-level Supervision: An Example

In this section, we present an illustrative example of cluster-level supervision. Though
the example is for document collections, we believe that the framework also offers
similar advantages for other high dimensional domains.

Consider a very large collection of postings on a vehicle related mailing list. An
analyst wishes to understand the issues being discussed, and, in order to do so, decides
to partition the posts into k clusters, using the first stage of the algorithm, which is
completely unsupervised. Note that he does not have any idea of possible issues ahead
of time, apart from that they all relate to vehicles. On inspecting the cluster descriptions
— the top words in decreasing order of weight (or importance) for the cluster — he
finds that one cluster (c1) is about {Yamaha, Honda, car, bike, GM}, while another (c2)
is about {parts, power-steering, door, power-windows}. Using his domain knowledge,
he understands that the c1 is about Bikes & Cars, while c2 is about Car Parts.

In the first scenario, he likes these cluster descriptions, and goes on to inspect some
of the individual posts contained in them. He notices that some posts ‘truly’ relating
to c1 (Bikes & Cars) — for example a few mentioning ‘the best part about Honda’ —
have been assigned incorrectly by the algorithm to the Car Parts cluster c2. He corrects
this by appropriately re-assigning these posts to c1. We call this an assignment feedback
from the user, where he moves a data instance from one existing cluster to another. The
clustering algorithm learns from this feedback — to add ‘part’ to the description of the
first cluster c1 as well, possibly with a small weight — so that other similar posts get
correctly assigned.

In the second scenario, the user decides that he would rather prefer cluster c1 to be
about Bikes and cluster c2 to be about Cars & Car Parts. To achieve this, he adjusts
the description of the clusters, by changing c1’s description to {Yamaha, Honda, bike}
and c2’s description to {car, GM, power-steering, door, power-windows, Honda}. We
call this a cluster description feedback, where the user directly modifies the features in
the cluster description according to his preference. Observe that it would not have been
possible for the user to create these new cluster descriptions, without knowing the sum-
maries provided by the existing cluster descriptions. Again, the algorithm learns from
this feedback to correctly reassign the posts to appropriate clusters. We will assume in
our formulation that the user provides a new weight vector for the cluster description,
but in practice the user need not specify weights explicitly. For example, in a working
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system, he may simply rank order the top few features, or click and drag a weight curve
over them. However, the details of the user interface is outside the scope of this paper,
and we intend to investigate this in future work.

In general, the user is expected to provide both these types of feedback to the algo-
rithm inter-actively, as new clusters emerge and documents get assigned to them. At any
stage, the algorithm considers all feedback provided so far, even those at earlier stages,
to recluster the documents.

We note that it is possible to provide cluster description feedback indirectly through
assignment feedback, and vice versa. Re-assignment of points to centroids will auto-
matically result from cluster description changes and similarly, many assignment con-
straints will lead to movement of the centroid in the next iteration. However we will see
how using them directly to achieve the intended effect saves the user considerable time
and effort.

3 Related Work

There has been a lot of research over the last decade on clustering with constraints
[4]. The most popular approach provides pair-wise instance-level supervision, which is
either used to learn distance metrics [19, 16, 2] or to provide additional constraints for
the clustering algorithm [17, 18, 5, 9–11]. Other work on cluster-level constraints looks
to control size and balancing of clusters [9, 1], or to find alternative clusters [14]. In
contrast, we look to provide on-line supervision on descriptions and data assignments
for existing clusters.

The idea of assignment feedback is closely related to active learning [7, 8]. How-
ever, active learning assumes the classes in the data to be known apriori, while in our
framework the user aims to simultaneously discover the clusters and the assignments to
them in the spirit of exploratory data mining.

The concept of active supervision for clustering has been explored [15, 6, 3, 12] but
mostly for pair-wise constraints. Cohn et. al.[6] proposed the idea of inter-active cluster-
ing as early as 1999 in an unpublished manuscript. Though they suggest the possible use
of cluster-item assignment feedback, the proposed model only incorporates pair-wise
constraints. Similarly, desJardins et. al.[12] explore how user interaction with clusters,
visualized in a two-dimensional space, can be interpreted as pair-wise constraints for
clustering. To the best of our knowledge, the idea of using assignment feedback in con-
junction with description feedback on current clusters to address high-dimensionality
of the data is novel in the literature.

Many clustering objective functions more sophisticated than k-means distortion
have been proposed. For example, co-clustering[13] looks to cluster the features and the
items simultaneously. Note that this paper does not propose a new clustering objective
function. Using k-means as an illustrative example, we have shown how cluster-level
inter-action can be used to improve unsupervised clustering. Such interaction can be
built on top of co-clustering and other proto-type based clustering models as well.
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4 Problem Formulation

In the traditional k-means problem, we have a set of n data points {x1, . . . , xn}, each
drawn from domainX . A clustering of these data points is defined by k clusters {c1, . . . , ck}
with corresponding centers {µ1, . . . , µk}, and an assignment δ(ci, xj) of data points to
clusters. We will consider each data point and the cluster center to be defined as weight
vectors over the features of X . Given such a clustering C, we can measure the distor-
tion error for C as the summed distance of data points from their corresponding cluster
centers:

Ex(C, δ) =
∑
i

∑
j

(µi − xj)2δ(µi, xj) (1)

Typically, given the set of data points, the goal of k-means clustering is to find the k
cluster centers and an assignment of data points to clusters such that the total distortion
error is minimized. In the rest of the formulation, we will not distinguish between clus-
ters and centers. For example, we will use the notation µ to refer to both a center and
its corresponding cluster.

In our version of the problem, we additionally have two different types of feedback
provided by the user.

We have a set F a of l assignment feedbacks, provided by the user possibly over
different stages of the inter-active procedure. The ith assignment feedback fai can be
represented as {xai ,µai , µai }, indicating that data point xai is assigned by the user to a
specific cluster µai from the set of current clusters µai .

We also have a set F d of m cluster description feedbacks obtained from the user,
again over various stages of the inter-active process. For the ith such feedback fdi ,
we assume that the user observes the top t features of a cluster ordered by weight
(odi ) and provides his preferred feature vector (pdi ) for it as feedback. We call t the
observed description length for cluster description feedback. Accordingly, we represent
fdi as {odi , pdi }, where odi is an ordered set of features and pdi is a weight vector over all
features.

Though each feedback is provided at a specific stage of the interaction for a specific
set of clusters C, it is desirable to make use of it at later stages when the current set of
clusters is C ′, depending on how different C ′ is from C. Therefore, at any stage of the
clustering, we consider all feedbacks that have been provided up to that stage.

In the presence of these two sets of feedbacks from the user, our reformulated clus-
tering goal is to conform with these feedbacks as much as possible, while still maintain-
ing low distortion error. In order to capture this in our objective function, we associate
one constraint for each feedback and a penalty that the clustering algorithm has to pay
for violating that constraint.

Let us first consider an assignment feedback fai . The most specific constraint that
arises from it is that every time the current set of clusters exactly matches µai , the data
point xai always has to be assigned to the specific cluster µai from among them. The
penalty for violating this constraint is the distance between µai and the cluster δ(xai )
to which xai is assigned instead. (Note that, without ambiguity, we have overloaded
the symbol δ to use δ(xai ) as a function that returns a specific cluster.) However, this
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very specific interpretation would render this constraint irrelevant at later stages of the
clustering when the current set of clusters is even slightly different from µai . To get
around this, we define the relevance Rai (C) of an assignment constraint fai , given a
current set of clusters C, as the ‘similarity’ of C with the set of clusters µai specified in
the feedback. For a ‘similar’ set of clusters C, there is no penalty when xai is assigned
to the cluster Na

i (C) which is ‘nearest’ to µai in the current cluster set C. If, however,
xai is assigned to some cluster δ(xai ) which is different fromNa

i (C), then the clustering
algorithm has to pay a penalty equal to the distance between δ(xai ) and Na

i (C). The
total assignment error takes into account both the penalty and the current relevance of
the constraint. The higher the relevance, the higher is the assignment error for violating
the constraint.

In summary, the clustering error associated with an assignment feedback fai is cap-
tured as

Eai (C, δ) = (δ(xai )−Na
i (C))2 ×Rai (C) (2)

The total error for the entire set of assignment feedbacks F a is obtained by summing
over the errors for the individual feedbacks: Ea(C, δ) =

∑l
i=1E

a
i (C, δ).

The relevance of the current set of clusters C to the feedback clusters µai is mea-
sured using the best mapping Ma

i (C) between the two sets of clusters. The weakness
of such a mapping can be measured by the summed distances between mapped clusters
from the two sets. The relevance is then defined using an exponential function as

Rai (C) = exp(−(
∑
µ∈C

(µ−Ma
i (µ))2) (3)

Let us now consider a cluster description feedback fdi ∈ F d. The most specific
constraint that can be associated with fdi is that for any cluster µ from the current set
of clusters C, if the observed description of µ is the same as the description odi in the
feedback, then the center µ of the cluster should match the user preferred weight vector
pdi . Recall that the observed description is the ordered set top(µ, t) of top t features
of µ. In case the current and preferred weight vectors (µ and pdi ) over features do not
match, the clustering algorithm has to pay a penalty equal to the distance between the
two weight vectors.

As for the assignment feedback, the specificity of this interpretation would make
fdi irrelevant for most clusters at later stages, where the top feature sequence top(µ, t)
does not exactly match odi . We deal with this, as before, by introducing a relevance
measure Rdi (µ) for each cluster description feedback fdi and any cluster µ. The higher
the relevance of the feedback for any cluster, the higher is the description error for not
conforming with it. The relevance Rdi (µ) of a description feedback may be measured
using various similarity measures defined for ordered sets:

Rdi (µ) = RankSim(top(µ, t), odi ) (4)

For simplicity, we presently define RankSim(s1, s2) to be 1 if the unordered sets cor-
responding to s1 and s2 match, and 0 otherwise. We are investigating better measures
than reward subset matches, such as Jaccard Similarity.
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In summary, the clustering error associated with each cluster description feedback
fdi is given as:

Edi (C, δ) = λi
∑
µ∈C

(µ− pdi )2 ×Rdi (µ) (5)

where λi is the strength of the ith cluster description feedback. To appreciate the use
of λi, observe that for assignment feedback, the algorithm can typically satisfy the user
by assigning the feedback point to the user specified cluster. However, for description
feedback, the points currently assigned to a cluster also affect the position of its new
center in conjunction with the user specified description. λi is used to specify the rela-
tive importance of the user’s feedback and the assigned points. We further elaborate on
the role of λi in Section 5.

The total error for the entire set of cluster description feedbacks F d is obtained by
summing over the errors for the individual feedbacks: Ed(C, δ) =

∑m
i=1E

d
i (C, δ).

Finally, the total clustering error is the sum of the errors due to distortion, assign-
ment constraints and cluster description constraints:

E(C, δ) = Ex(C, δ) + Ea(C, δ) + Ed(C, δ) (6)

Our goal is to find the optimal combination of clusters and assignments that minimize
this total error.

5 Interactive Clustering Algorithm

In this section, we look at an algorithm that iteratively alternates between interacting
with the user to acquire feedback and minimizing the total error in Equation (6) con-
sidering all the feedback obtained from the user so far over all stages of the algorithm.
Algorithms for proto-type or model based clustering typically follow an iterative alter-
nating optimization style, where each step consists of two sub-steps - prototype update
and re-assignment. In the following subsections, we describe how these two steps can
be modified to handle user feedback, and how the user interacts with the algorithm to
provide feedback.

Cluster Update: In the cluster update sub-step, the existing clusters C are updated
based on the current assignment δ of data points to clusters, and the current relevance
Ra(C) and Rd(C) of the feedbacks F a and F d. Unfortunately, the different clusters
cannot be updated independently as for the traditional k-means algorithm. This is be-
cause the feedbacks introduce dependencies across clusters. As a result, we cyclically
update each of the k clusters keeping the other k−1 clusters fixed. This procedure is re-
peated until all the clusters stabilize. When the other k−1 clusters are held fixed, along
with the assignments and the feedback relevances, updating cluster µi to minimize to-
tal error becomes a quadratic optimization problem. Solving it leads to the following
update step:

µ =
1
Z
×

∑
x

xδ(x, µ) +
l∑
i=1

Rai (C)[δ(xai , µ)Na
i (C) +
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∑
µ′

I(µ′, Na
i (C))δ(xai , µ

′)µ′] +
m∑
i=1

λiR
u
i (µ)pdi

where I() is the indicator function, and Z is an appropriate normalization term.
The update rule may be interpreted as follows.
The first term shows the traditional movement of the cluster towards the centroid

of the data points currently assigned to it. The second and third terms demonstrate the
dependence on the other current centers brought about by the assignment constraints.
An assignment feedback fai is relevant for cluster µ either if the feedback data point xai
is currently assigned to this cluster, or if µ is the currently preferred cluster Na

i (C) for
feedback fai . In the first case, the cluster µ moves towards that current cluster Na

i (C)
which is the currently preferred cluster for the feedback fai . This is reflected by the
second term. In the other case, cluster µ tries to move closer to that cluster µ′ to which
the feedback point xai is currently assigned. This is reflected by the third term. Both
of these movements are influenced by the current relevance Rai (C) of the assignment
feedback in question.

The effect of the cluster description feedbacks is captured by the last term. For any
description feedback fdi that is relevant for this cluster, the cluster moves closer to the
preferred description pdi in the feedback. As before, this movement is also tempered by
the relevance Rui (µ) of the feedback for this cluster.

Finally, the updated position of the cluster is the net effect of the influence of all
the relevant assignment and description constraints, as well as all of the data points
currently assigned to this cluster. Observe that in the update rule, the user preferred
description pdi for a description feedback behaves similarly to any other data point as-
signed to the cluster, and would have minimal effect in determining its new position
without the weighting term λi.

Once all of the k clusters have been iteratively updated and have stabilized, the rele-
vanceRa andRd of the assignment and description constraints is recalculated based on
the updated cluster positions, according to Equation (3) and Equation (4) respectively.

Point Reassignment: In the re-assignment step, the assignment δ of the data points is
recalculated based on the updated cluster positions and the current relevance of the con-
straints. The contribution to clustering error by assigning a data point x to an existing
cluster µ can be calculated by considering the distance from the cluster, and, for any
assignment feedback fai specified on the point x, the distance of µ from the currently
preferred cluster Na

i (C) for the feedback, and its current relevance Rai (C):

(µ− x)2 +
l∑
i=1

Rai (C)I(x, xai )(µ−Na
i (C))2

where I() is again the indicator function. The point is then assigned to that cluster µ
among the k current clusters for which this assignment error is minimized. Observe
that cluster description feedbacks do not influence the assignment of data points. Also
observe that, unlike cluster updates, the reassignment of each data point can still be
done independently of the other data points, as in the traditional k-means algorithm.
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Algo InteractiveCluster
Params: Data point set X , Int k

1. Initialize F a and F d to empty set

% Initialize clusters
2. Initialize k clusters in C
3. Iterate n times or until convergence
4. Assign each data point in X to nearest cluster
5. Recompute k clusters from assigned data points

% Start inter-active k-means
6. Iterate until user is satisfied with C
7. Acquire new feedback and add to F a and F d

8. Iterate n times or until convergence
9. Iteratively update each of k clusters in C

based on relevance Ra, Rd and assignment δ
10. Re-calculate relevance Ra, Rd, based on updated clusters C
11. Re-calcluate assignment of data points in X

based on updated clusters C and relevance Ra

12. Return k clusters C and assignment δ

Fig. 2. High level pseudo-code describing the cluster-level inter-active k-means (CLIKM) algo-
rithm

User Interaction: At each stage, after minimizing total error in Equation (6) consid-
ering all the feedback obtained so far, the algorithm returns the new set of clusters for
inspection. The user browses over the new cluster descriptions and assignments and
provides fresh feedback on them. While it may be possible for the user to inspect all
cluster descriptions, or at least the ones that have changed significantly since his pre-
vious inspection, it is extremely unlikely that he can inspect cluster assignments of all
data items. We will assume that he can provide provide only nf = na + nd feedbacks
at each interaction stage, where na is the number of assignment feedbacks and nd is
the number of description feedbacks. We assume nd = k, which means he inspects all
clusters, but na � n, where n is the number of data points. Currently, we assume the
the user randomly selects na data points for inspecting and providing feedback. How-
ever, it is possible to do better than this, as in the case of active learning [7]. While we
have done initial work on actively selecting the data points for presenting to the user for
feedback, this is largely a subject of future research.

The overall cluster-level interactive k-means algorithm (CLIKM) is shown in Fig-
ure 2. The algorithm starts by creating an initial set of clusters in steps 2-5, based only
on distortion error. Then at every step, it updates the clusters (step 9), recalculates the
relevance of all feedbacks (step 10) and then re-assigns the data points based on the
updated clusters and the relevance of the all constraints acquired so far (step 11). These
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steps are repeated until convergence based on the current set of feedbacks. The algo-
rithm terminates when the user is satisfied with the current clustering. Otherwise, the
algorithm acquires more feedback from the user (step 7) and reclusters the data points
based on the feedback set, which now additionally includes the most recently received
feedbacks.

6 A Supervisor Model

Large-scale evaluations with interactive algorithms with human supervisors require a lot
of time and effort. In this section, as a substitute, we describe a parameterized supervisor
model for our framework, based on gold-standard cluster labels on data points.

The challenge is that cluster-level supervision is conditioned on the current set of
clusters, which may be different from the true clusters in the gold-standard. We assume
that the supervisor is able to construct a correspondence between the true clusters T in
the gold standard and the current clusters C available at any stage of the interactive pro-
cess. This correspondence is found using a maximum weighted matching between the
true clusters and the current clusters in bipartite graph, where the edge weight between
a true cluster t and a current cluster c is the number of data points from t in c.

As the first supervisor parameter, we control the supervisor’s knowledge about the
exact description of a true cluster t using a parameter p ∈ [0, 1]. When averaging over
documents in a true cluster t to construct its description, any specific document is in-
cluded in the average computation with probability p, so that the user only has partial
knowledge of t’s description for p < 1.0.

The second supervisor parameter is a recognition threshold r for true clusters from
computed clusters. For exploratory data mining, the supervisor often becomes aware of
clusters existing in the data as they gradually emerge during the clustering process. We
assume that the supervisor recognizes a true cluster t from the current cluster c only if c
has ambiguity (measured as entropy over true clusters) below threshold r, and if t is the
majority true cluster within c. At any stage of the clustering algorithm, the supervisor
has a set Tr ⊆ T of recognized true clusters, and is able map current classes only to
these true clusters.

Now, when asked to provide assignment feedback for a data point x given current
clusters C and true clusters T , the supervisor first retrieves the true cluster t for x,
and then returns the corresponding current cluster. On the other hand, when asked for
description feedback on a current cluster c ∈ C, the supervisor first retrieves the corre-
sponding true cluster t, and then returns its inexact description based on his knowledge
level p. Note that the supervisor can provide feedback only if the relevant true cluster t
belongs in his recognized set of clusters Tr.

In the experimental evaluation of our interactive clustering algorithm in the next
section, we consider supervisors with different recognition levels, as well as different
levels of knowledge.

Convergence An important issue that naturally arises for any interactive data mining
task is that of convergence. While emphasizing that a detailed investigation of supervi-
sor behavior and convergence is beyond the scope of this paper, here we briefly discuss
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conditions under which convergence can be guaranteed in the context of our supervisor
model.

At a high level, the interactive clustering process converges if and only if the su-
pervisor provides a consistent sequence of feedbacks. Here we provide a very strict
definition of consistency. A sequence of feedbacks is consistent if all of the following
conditions hold. First, the resulting sequence of recognized cluster sets is monotonically
non-decreasing, i.e., a cluster once recognized by the supervisor cannot be decided as
unrecognizable later. Secondly, for two cluster description feedbacks fdi ≡ {odi , pdi }
and fdj ≡ {odj , pdj} provided at two different stages of CLIKM, if they are provided
on the same recognized cluster (odi = odj ), then the preferred descriptions also are
the same (pdi = pdj ). Thirdly, for two assignment feedbacks fai ≡ {xai ,µai , µai } and
faj ≡ {xaj ,µaj , µaj } provided at different stages, if they are provided for the same data
point (xai = xaj ) given the same current set of clusters (µai = µaj ), then the preferred
cluster also has to be the same (µai = µaj ). Under the above conditions, the interactive
process is guaranteed to convergence.

We think that it is possible to relax the first two conditions, but note that third is
an absolute requirement. Also, the number of iterations to convergence for a consistent
feedback sequence depends on multiple factors, such as the rate of growth of the rec-
ognized cluster set, and for multiple assignment feedbacks on the same data point, the
similarity between their set of clusters.

7 Experiments

In this section, we experimentally evaluate the effectiveness of our proposed interac-
tive clustering framework. We considered two benchmark real-world text categorization
datasets from two different domains, Twenty Newsgroups3 and Reuters-215784. The
goal of the clustering task is to produce clusters that correspond to the gold-standard
categories. Generally, this is not expected of unsupervised clustering. We investigate
how accurately and efficiently the gold standard categories can be discovered when
provided with semi-supervision. We also investigate the relative impact of assignment
and cluster description feedback, and the effect of different supervisor parameters on
our cluster-level interactive framework. We next describe our datasets, baselines and
evaluation metrics before discussing experimental results.

Datasets: For our first dataset (8NG), we selected eight 20 Newsgroup classes (all of
rec.∗ and sci.∗) having 1000 documents each. Our second dataset (R10) was created
by selecting the top 10 categories from the Reuters-21578 corpus, and including all
train/test documents, resulting in a collection of 9118 documents. We pre-processed
all documents in a standard way using word stemming, and pruning stop-words and
infrequent words (occurring less than 5 times in the dataset). We have made the actual
processed datasets and their descriptions available online5.

3 http://people.csail.mit.edu/jrennie/20Newsgroups/
4 http://www.daviddlewis.com/resources/testcollections/reuters21578/
5 http://www.godbole.net/shantanu/work/ecml10iclust.html
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Evaluation Metric: To evaluate a set of clusters against a gold-standard, we check the
correctness of clustering decisions over all pairs of data points. We report the standard
F1 measure and Adjusted Rand Index (ARI) over the pairwise clustering decisions. The
F1 measure is the harmonic mean of precision and recall over pairwise decisions. The
Adjusted Rand Index is defined as 2(ab−cd)/((a+d)(d+b)+(a+c)(c+b)) where a is
the number of true positive pairs, b is the number of true negative pairs, c is the number
of false positive pairs and d is the number of false negative pairs. We also evaluated
using Normalized Mutual Information and found the trends to be similar to that with F1
and ARI.

Baselines: As the first baseline for our cluster-level interactive k-means algorithm
(CLIKM), we consider completely unsupervised k-means (KM). We also compare
against pair-wise constrained clustering with instance-level must-link and cannot-link
constraints (PCC) [3]. For this comparison, we incrementally provide pair-wise con-
straints to PCC and cluster-level constraints to CLIKM and compare their performance
for the same number of provided constraints. Since PCC infers additional constraints
from the provided ones using transitivity of must-link constraints, the actual number of
constraints considered by PCC is much larger than the provided number. In contrast,
the actual and provided number of constraints is the same for CLIKM. While doing this
comparison, it needs to be borne in mind that the nature of the two constraints are quite
different from each other. First, since CLIKM constraints are conditioned on the current
set of clusters, they cannot be converted to an equivalent set of independent pair-wise
constraints over data points. Secondly, the supervisor effort required to provide these
two types of constraints will also be quite different, and can only be measured using
extensive user studies. Keeping in mind these differences, we study the relative perfor-
mance of PCC and CLIKM when given an equal — though not necessarily equivalent
— number of constraints.

Since all of these algorithms only find local optima, when comparing any two, we
provide them with the same initialization. All the reported plots are averaged over 10
runs.

Parameter Settings: As default parameters, we set observed cluster description length
t = 10, supervisor recognition threshold r = 0.95 and knowledge level p = 0.25. The
strength of description feedback λ is set to be the average cluster size (n/k), so that
the importance of the supervisor’s feedback is roughly the same as that of the points
assigned to the cluster. We set the number of feedbacks at each step nf = 200 for
both CLIKM and PCC. (Trends are similar with nf = 100 and 200) For CLIKM,
description feedback is provided for all current clusters (nd = k), so that assignment
feedback is provided for na = 200 − k random data points. For PCC, must-link or
cannot-link feedback is provided for nf random pairs of data points. Recall that the
actual number of constraints considered by PCC is much larger than nf , since PCC
infers more constraints using transitivity of must-link constraints.

Experiment 1 - CLIKM vs Baselines: In our first experiment, we compare CLIKM
with point assignment and cluster description feedback, PCC with pair-wise item-level
feedback, and KM on two datasets. The results are shown in Figure 3, where clustering
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(a) (b)

(c) (d)

Fig. 3. Performance (F1 and ARI) of CLIKM and PCC vs number of feedbacks from the user
against KM as baseline on 8NG (a,c) and R10 (b,d)

performance is plotted against the cumulative number feedbacks provided to PCC and
CLIKM. The trends are similar for F1 and ARI as the evaluation measure. Expectedly,
with increasing number of feedbacks, the performance CLIKM improves significantly
over unsupervised KM. Performance improves most sharply at the beginning, so that
after a few hundred feedbacks F1 increases from 0.22 to 0.4 for 8NG and from 0.4 to
0.47 for R10, and increases steadily, but at a slower rate, after that. This is because
the user is able to recognize all true clusters during the very first interaction with the
default recognition threshold r = 0.95. Also observe that performance of CLIKM drops
slightly at a couple of places for R10 in Figure 3(b,d). This is due to the supervisor’s
inexact knowledge when providing description feedback (p = 0.25). We investigate
the effect of the user’s knowledge and recognition ability in greater detail later in the
section.

Interestingly, the rate of performance improvement for CLIKM is significantly higher
than PCC for both datasets. One potential reason for this is that the space of constraints
is quadratic in the number of data items for PCC. In comparison, CLIKM needs at most
a linear number of constraints for each clustering iteration, and the number of iterations
is usually a constant. As a result, the user can drive the clustering towards his desired
state with significantly fewer feedbacks using CLIKM.
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(a) (b)

Fig. 4. Effect of assignment and cluster description feedback on CLIKM for (a) 8NG and (b) R10

In the rest of our experiments, we report only F1 numbers. All trends are similar
with ARI.

Experiment 2 - Ablation Study: In our second experiment, we perform an ablation study
to evaluate the impact of assignment and cluster description feedback separately. The
results are shown in Figure 4. The plots clearly shows that improvement brought about
by cluster description feedback on top of that from assignment feedback. It demon-
strates that cluster description feedback enables the user to guide the clustering much
faster than when empowered only with assignment feedback.

Experiment 3 - Varying Supervisor Parameters: The success of interactive clustering
depends a lot on the user’s ability to recognize desired clusters, his knowledge about
the correct description of these clusters and the strength of description feedback that he
sets. We evaluate this over the next two experiments.

λ = n/10k λ = n/2k λ = n/k

p=0.001 0.486 0.471 0.410
p=0.01 0.487 0.497 0.487
p=0.10 0.489 0.502 0.522
p=0.25 0.490 0.510 0.511

Table 1. Clustering performance (F1) after 3000 feedbacks for varying user knowledge (p) and
user confidence (λ) on R10

First, in Table 1, we record the effect of providing description feedback to CLIKM
with different combinations of user knowledge p and strength of description feedback
λ, after it has already received 3000 assignment feedbacks. The first trend is that perfor-
mance improves with supervisor knowledge when λ is fixed, over all 3 columns. Recall
that λ = n/k corresponds to equally weighting user’s cluster description feedback and
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Fig. 5. F1 using strong (r = 0.95) and weak supervisor (r = 0.9) for 8NG

the data points currently assigned to a cluster, so that the first two columns correspond to
weighting the feedback 10 times and 2 times lower than the data respectively. The rows
provide a more interesting insight. For reasonable supervisor knowledge, performance
improves with higher λ. However, when supervisor knowledge is weak (first two rows),
increasing λ hurts performance. This suggests that when the supervisor is not confident
about his knowledge of the clusters, he should allow the data to influence the clustering
more than his supervision.

Finally, we explore the impact of recognition threshold r of the supervisor. In Fig-
ure 5, we compare CLIKM performance with the default strong supervisor (r = 0.95)
against that with a weak supervisor (r = 0.9). For the strong supervisor, performance
improves significantly right at the beginning when all the true clusters are recognized
and description feedback is provided for them. For the weak supervisor, only 50% of
the true clusters are recognized at the first stage, and the rest at various later stages of
the inter-active process, as marked by the jumps in performance. The gap between the
two curves closes steadily as the inter-active process progresses.

Summary of Experiments: In summary, our experiments demonstrate that cluster-level
semi-supervision leads to significant and steady improvements in clustering accuracy
in comparison with unsupervised k-means. Improvements persist over varying levels of
supervisor knowledge and cluster recognition ability. The rate of improvement is several
times faster compared to that with an equal number pair-wise instance-level constraints.

8 Conclusions

In this paper we have proposed a novel semi-supervised model for interactive cluster-
ing, where the user provides two different types of feedback that align naturally with the
update and assignment steps of prototype based clustering. Taking k-means as an ex-
ample, we have shown how such feedback can be incorporated within prototype based
objective functions as additional constraints to be satisfied. We have demonstrated the
effectiveness of our model for clustering two real-life benchmark text datasets. Interest-
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ingly, our experiments show that performance increases significantly faster using this
cluster-level semi-supervision compared to pair-wise instance-level supervision.

The proposed model can be further improved, for example by considering the source
cluster in addition to the destination cluster for assignment feedback, and generalizing
cluster description feedback with better measures of rank similarity. We also intend to
improve on our supervisor model for more detailed investigation of convergence, and
also better understand the cognitive load on the user for instance-level and cluster-level
semi-supervision.

We believe that cluster-level supervision can emerge as very promising alternative
to pair-wise instance-level supervision for high dimensional domains such as document
collections that cannot be easily visualized.
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