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Abstract

This project investigates some of the issues involved in a new proposal for expand-
ing the scope of the field of Data Mining by providing mining models as services on
the Internet. This idea can widely increase the reach and accessibility of Data Mining
to common people because one of the primary stumbling blocks in the adoption of
mining is the extremely high level of expertise and data resources needed in building
a robust mining model. We feel this task should be left to the specialists with access
to data and resources, who can provide their most up to date model as a service on
the Internet for public use.

In this report we investigate the problem of choosing the right prediction when doc-
ument classification is provided as an Internet service. When several autonomously
learnt classifiers predict different classes for the same document, the problem of choos-
ing the right prediction becomes challenging because we cannot assume a single syn-
chronous step for learning the strengths and weakness of the different classifiers using
a training dataset. We present a new algorithm that uses a novel dynamic, instance-
based approach to model selection. We evaluate the algorithm on two real-life doc-
ument classification datasets. Our algorithm performs better than a plurality voting
scheme which is the only known method that can operate in such a dynamic setting.
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Chapter 1

The Learning Web

1.1 The Internet as a collaboration resource

The World Wide Web connects millions of machines backed by intelligent human
beings. This has heralded an era of sharing. Vast treasure houses of authoritative
information that were previously confined to books with limited accessibility are now
freely available on the Internet. The Internet has surpassed all expectations of in-
formation sharing. The mesh of loose, heterogeneous intelligence that is the Web
today is capable of fostering even higher levels of sharing. Complex computational
problems are being solved today using the Internet as a very large scale distributed
system. Many collaborative efforts aim to build better systems using the Internet by
fostering human knowledge and experience sharing.

Sharing of computing power: A large scale distributed computation project
called ‘The Search for Extra-terrestrial Intelligence at Home1 (SETI@Home)’, has
been running for a few years now. Radio signals from the world’s massive radio tele-
scopes generate massive amounts of data daily. These signals need to be analyzed
for interesting patterns. This analysis is a very computationally intensive task. In
this project, a central server coordinates various volunteers who are willing to donate
their unused computer time. The controlling server breaks up its large data sets into
smaller parts. These smaller data sets are distributed to the volunteers. Whenever
the volunteers have idle CPU time to spare, a custom program uses the available re-
sources for its computations. Processed data sets are submitted to the central server
which can then put the results together and consolidate the results. All this exchange
of data is facilitated by the Internet.

Distributed.net2 is another collaborative computing effort. This project han-
dles very large scale, mathematically intensive problems. Optimal Golumb Rulers,
Mersenne primes, and factoring cryptographic keys are some of the problems being
worked upon. Some of these problems are attempted by brute force, requiring large
computational power. Volunteers can download client software which communicates

1http://setiathome.berkeley.edu/
2http://www.distributed.net/
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CHAPTER 1. THE LEARNING WEB 3

with a central server. The client downloads small parts of the problem task and uses
spare CPU resources for its computation. Results are submitted to the central server
via the Internet where the results are consolidated.

Sharing human knowledge and expertise: The Open Directory Project3 (ODP
- also known as Directory Mozilla or DMOZ), is a human edited directory of websites.
It was started with the aim of being the largest, most comprehensive human-reviewed
directory on the Web. Over 33, 000 volunteer editors have contributed to the directory
over time. The directory currently lists over 2.2 million sites in more than 330, 000
categories and is growing everyday. All site classification and listing issues are re-
solved internally via human discussions. The voluntary editors generally manage
small categories in their own areas of interest and specialization. hence, the domain
knowledge of so many individuals is put to good use. This taxonomy along with the
listings and editorial site descriptions is made available freely on the Internet. Many
web directories and search engines like Google4, Hotbot5, and AOLSearch6 directly
use the ODP data. Other directories try to follow a similar model of human edited
directories and develop their own taxonomy. However, the standardization level and
scale of success of the ODP is unmatched.

Many search engine companies are capable of crawling a significant part of the
Internet. The ODP taxonomy offers a level of standardization for classification. These
companies could build automatic document classifiers for the Web based on this
standard taxonomy. In such a case, it would be a very useful idea to offer document
classification as a service on the Internet.

1.2 Data Mining services

The main goal of this project is to explore some of the issues involved in the proposal
of extending the Internet’s power of information sharing to knowledge sharing[10].
Anyone with huge amount of data and expertise can host ‘knowledge servers’ by
building models from their accumulated data on any aspect of data mining. A poten-
tial user can consult these servers and choose from the opinion of these various sites
to make her final decision. These mining servers are used in a totally ad hoc, per-user
and per-instance basis much like the way documents are accessed on the web. Some
ideas for providing mining models like Risk Prediction, and Collaborative Filtering as
services are discussed in detail in [10]. While rich document sources have long since
found their way to the Internet, rich sources of data are still within the confines of
disconnected large databases. The few instances of knowledge sharing practiced to-
day are all based on model buy-outs. We would like to have better ways to exchange
models between two entities. One-time use of someone else’s model without explicit

3http://dmoz.org/
4http://directory.google.com/
5http://dir.hotbot.lycos.com/
6http://www.aolsearch.com/
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model exchange would be facilitated if mining models are offered in a service oriented
setting.

Document classification services: An imminently useful mining service is a doc-
ument classification service that accepts documents and predicts its class from a pre-
defined category tree. The Internet has several large categorized document sources.
Some examples are

• PubMed7. This is a search service for medical documents, articles, and papers.
It provides access to over 11 million citations in medical databases with links
to participating online journals.

• CoRR8, CiteSeer9 and NCSTRL10: These are online services for computer
science papers and articles. They provide a classified collection of papers with
searchable citations.

• The Open Directory Project11, and Yahoo!12. These are popular directo-
ries for general web documents.

Many directories like Google, Hotbot, AOLSearch, etc. base their directories on the
ODP directory structure. Other directories like Yahoo!, Altavista, and LookSmart
have their own structure, but are not as comprehensive and up to date as the ODP.
The taxonomies of these directories do not match. For example, the ODP has ‘Music’
listed under the Arts category, whereas Altavista lists Music as a subcategory under
Entertainment. While none of them may be wrong, such discrepancies hinder any
effort at standardizing the classification structure.

Search engines crawl the Web without any taxonomy in mind. An exciting ex-
tension would be for search engines to classify all pages they crawl according to a
directory hierarchy. It is possible for these companies to use a standard taxonomy
like the ODP and build large automatic document classifiers. Google already takes
its version of the ODP tree into account while returning search results. If a page
listed in it’s directory matches the search criteria, Google returns that category as a
related category along with its top ten results according to the PageRank[1] metric.
Pages listed in the ODP have high visibility on the Internet due to replication of
it’s data. Directory listed pages figure very high in the results. Companies of this
scale and size are excellent candidates for participating in a document classification
service scenario. They can build large scale automatic document classifiers. The idea
of automatic document classifiers as a service will be effective when implementations
of this kind materialize.

7http://www.ncbi.nlm.nih.gov/PubMed/
8http://xxx.lanl.gov/new/cs.html
9http://citeseer.nj.nec.com/cs/

10http://www.ncstrl.org/
11http://dmoz.org/
12http://dir.yahoo.com/
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Consider a new digital library or newspaper agency that wants to automatically
categorize its submissions over a standard taxonomy. Instead of painfully downloading
the huge amounts of data on its site and spending money and effort in building a good
automatic classifier, it might be more willing to use the categorization service, even
if it involves a nominal fee. Portals for selling knowledge is not a new concept in the
Internet as is evident in the recent proliferation of “Ask an expert” sites13. These are
however backed by human experts who answer the questions posed by users either
free or at a nominal charge.

FindSame14 is a free service which already exists on the Internet. It finds docu-
ments similar to the one submitted to the site. Similar documents are defined here
as documents that contain phrases, sentences, and paragraphs of the submitted doc-
ument. It is hence different from keyword based search engines which have to deal
with a subsequent problem of relevance ranking. This service takes as input an entire
document and returns a list of documents that contain any fragment of that document
longer than about one line of text. There is a speciality use of this kind of matching
in detecting illegal use of speeches, quotes, and press releases.

Our goal is to automate these document classification services in a distributed ad
hoc setting, at the same time being instance-based to be practicable in an Internet-like
scenario. Several interesting research issues however crop up before such a concept
can be deployed in practice. We look at some of these issues in detail in Section 1.2.2.

1.2.1 Advantages of the mining service model

The service model of data mining is more advantageous than the existing model
buy-out practice.

• The service model encourages more sharing and provides greater accessibility
to end users.

• The user gets access to the most up to date model at all times.

• As the mining server gains new data, its model can be refined and the latest
results be made available right away.

• There is no software installation cost and no cost for occasional or one time use.

• The user can be mobile needing only Internet access.

1.2.2 Challenges and research issues

Standardizing vocabulary: Standardization in the access of data and models is
an oft-repeated problem. The reason for the widespread sharing of documents is
that they are by and large self-describing. In contrast, data even with the schema

13http://dmoz.org/Reference/Ask An Expert/
14http://www.findsame.com/
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definition in hand is too hard to make sense of outside the established community of
DBAs and regular users. This is slowly but gradually changing thanks to the push
given by the B2B E-Commerce industry. There are a growing number of consortia
on standardizing various aspects of day-to-day business information like ebXML15.
Even in the mining area there is an increasing push for standardization of processes,
exchange of predictive models, and APIs.

• CRISP-DM16 is a working group developing the “CRoss-Industry Standard Pro-
cess for Data Mining”. This group aims at standardizing the way practitioners
do data mining. It puts a process in place for data mining practitioners to
follow. The current CRISP-DM draft consists of a Process and Users Guide
which contains the phases in a typical data mining project. The tasks involved
and the relationships between them are described in detail. Other relationships
between goals of the project, background of the user, and more importantly
the data are also taken into account. The process identifies the main stages
of a project as Data Understanding, Data Preparation, Modeling, Evaluation,
Business Understanding, and Deployment.

• The Data Mining Group17 is developing the Predictive Model Markup Language
(PMML). This is a XML-based language for defining predictive models like deci-
sion trees, and facilitates sharing of similar models. Being a vendor independent
method, there are no incompatibility barriers to applications. However this does
not address the model combination problem.

• OLE-DB for Data Mining. There is an API standardization effort at Microsoft,
to incorporate data mining operators in the OLE-DB application programming
framework.

For our document classification scenario mentioned in Section [1.2], one option for
a classification standardization is that all directories and search engines employ the
classification structure of a well-accepted directory like the ODP. This is easier said
than done, because the amount of rework required to re-classify existing listings is
huge.

Confidentiality of data and model: This is perhaps another major reason for
limited sharing of some kinds of data or models on the Internet. Two phenomenon are
promising to remove this limitation. First, there are newer data sources of popular
appeal that are available freely on the web and are equally or more important to
mine. This is wholly true for the document classification example and partially true
for the collaborative filtering scenario. Second, better B2B E-Commerce and security
infrastructure enables companies to share confidential models on the Internet. Also,
companies are much more ready to share summarized conclusions drawn from mining
models rather than raw data. For instance, a credit company would perhaps not be

15http://www.ebxml.com/
16http://www.ncr.dk/CRISP/
17http://www.dmg.org/
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willing to share its raw data with another credit or insurance company, whereas it
may be willing to share its risk prediction model.

Ad hoc model selection: When the multiple sites offer prediction services on
the same domain, there is another issue which arises. In the document classification
scenario, the user has multiple candidate sites to choose from. How can a user choose
between the predictions of these sites? This can be interpreted as a model integration
problem for which well known solutions exist but the setting here is very different.
First, the participating sites are autonomous which means the input data, method,
and time of model construction proceeds autonomously without any co-ordination
with other sites. Second, the sites might be constantly evolving and changing their
model at will. Thus, in most cases, a knowledge server may not even know about
the existence of some other knowledge server. The user therefore, cannot use a single
off-line training phase for chalking out a criteria for combining the different models.
Finally, even the type of people using the model is drastically different. Unlike the
trained data mining specialists, we will now have more one-time occasional users who
most likely will not have historical data to benchmark the models and choose between
different models. Therefore, existing methods of meta learning that require a separate
validation set are ruled out. “Which prediction to trust?” becomes a central question
which needs to be addressed.

In addition to the above there are several other interesting issues that will arise
once mining services become commonly used.

• How does one discover relevant servers for the task at hand?

• How can servers express their scope and capability?

• How does a server’s credibility gets established? In the document world, people
indirectly establish a site’s credibility by linking to that site. What are similar
credibility measures for other mining models?



Chapter 2

Evidence-Boosting

2.1 The algorithm

We deal with the specific problem domain of providing mining services in the docu-
ment classification domain. We set a few criteria upfront that our algorithm should
satisfy.

• Site autonomy must be maintained. We can make no assumptions on the clas-
sification method each site uses. The proposed method should work on any
classification method.

• Do not require a distinct global synchronization step where sites exchange data.
In fact, a site should not even have to be aware of the existence of some other
peer site. The sites should be totally independent.

• Do not require sites to hold the entire training data.

• Do not assume access to a validation dataset for learning over models.

There exists a simple method that can operate under the constraints specified.
This is a Plurality voting or majority voting scheme. No separate training phase as
in meta-learning is required. This method can work in an instance-based setting.
The predictions of each site’s classifier on a particular document are collected at a
coordinating site, and the class predicted by a majority of the classifiers wins. This
method gives equal weight to all sites and cannot handle speciality classifiers. If it is
known that a particular site is an extremely well trained classifier for one class, then
this fact and the strength of its predictions do not get special treatment. We would
like to favour any speciality classifiers even if they may be the only ones predicting a
particular class. This is not possible in the plurality voting method.

Evidence-Boosting We now present our algorithm called the Evidence-Boosting al-
gorithm. First, each site classifies the test instance in a particular class. Following
this, a co-ordinator challenges each of the participating sites to prove their prediction.
Each site then provides some evidence documents which it deems similar to the test

8



CHAPTER 2. EVIDENCE-BOOSTING 9

document. This is motivated by the real-life observation of experts backing their ac-
tions by citing similar precedents. Evidence selection is not an easy problem to solve.
A site can employ its own metrics to determine documents similar to the query doc-
ument. Some alternatives are discussed in section [2.2]. At the time of training each
classifier there is hence the additional requirement of storing some extra information.
This information should be sufficient to determine similarity of training documents
and the query instance.

By producing training instances similar to the query instance, a site lays its claim
to more trust. After each site passes on its evidences to the co-ordinating site, these
evidences are passed on for cross-validation to the other sites. All other sites then
predict the class of each of these evidences according to their own classification model.
Some voting mechanism then assigns weights to the evidences of each site. This weight
measure depends on how sites vote upon the evidences of other sites. A higher weight
establishes higher credibility of a particular site. This weighting scheme and various
options are discussed in section [2.3]. Finally the site having the highest weight is
chosen, and its predicted class is chosen as the winning class.

The Evidence-Boosting algorithm:

1. Send the test instance t to each of N sites (N = number of sites)
2. Collect from each site, the prediction on t,

and l evidences that support this prediction.
3. For each of the N ∗ l evidences,

get prediction of the remaining (N − 1) sites on it
4. For each evidence e,

define a proximity measure Pe from the evidence e to t
5. For each site Si define weight Wi as

the sum of the proximity of all its evidences (Σe=l
e=0Pe)

6. Return the class of the site with the largest weight Wi.

Various proximity measures are discussed in [2.3]. Various methods of evidence se-
lection follow in the next section.

2.2 Evidence Selection

The essence of the Evidence-Boosting algorithm is the central idea that a site should be
trusted more because it can produce evidences which are similar to the test document.
The site is then sure to have been trained on some documents similar to the test
instance. The difficulty is to establish the relevance or closeness of training documents
to the test instance and select them as evidences. We discuss below, the various
methods we have tried and implemented below. Experimental results are given in
section [3.3].

In our particular setting of document classification across multiple sites, we make
no assumptions about the kinds of individual classifiers used. For evaluation purposes
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however, we use a Naive-bayes text classifier using the multinomial model [2] at each
of the sites. We impose a small requirement upon each of the classifiers. Along with
the predictions on the test instance and all the evidences, the classifier should provides
us with a class probability vector. (In a practical setting, evidence selection is left
to the site itself and it can use any method to find similar documents.) The class
probability vector of each document should contain the probabilities of the document
belonging to various classes.

Ve = {Pc | ∀c ∈ C}

where, each Pc is the probability of the instance/evidence e belonging to one of C
classes. By this requirement, we are trying to come up with a generalized method
to define similarity of documents given a class probability vector. We then employ
some distance measures to rank candidate evidences. According to those distance
measures, the l documents closest to the test instance t are then chosen as evidences.
The distance measures we explored are discussed below.

Ln distances: Considering the large number of classes we have to potentially deal
with, we consider each document to lie in a high dimensional classification space.
Each dimension is a class to which the document belongs with some probability. The
class probability vector then represents a point in this classification space. Intuitively,
we can take the Euclidean (L2) distance between any two such points, the test and
candidate evidence in this case, and expect that this will be a fair measure of the
closeness of documents in the classification space. Against our expectations this
method did not perform very well. Upon looking at the results we inferred that
one possible cause of this distance measure not returning good evidences was the
problem of outliers. The probability values are log probability values as returned by
the classifiers. Very low probabilities thus translate to very large negative numbers.
We were led to think that taking a Euclidean distance, and so squaring the differences
was the cause of the problem. To handle this, we then employed the Manhattan (L1)
distance measure which we thought would perform well.

Even with the L1 distance measure we did not come up with satisfactory results.
Upon further inspection we found some interesting reasons for the above behaviour.
The cause of this behaviour was the multinomial model of text classification which
the Naive-bayes classifier was using. While a multinomial model is very good to give
very accurate predictions about the winning class of a test document, it does not very
well reflect closeness of the other loosing classes in its probability scores. We expect
the sum of the probabilities to be 1. This particular classification model gives a very
high probability (almost always 1) to the winning class, whereas all the loosing classes
get very low probability scores. The log of these values thus generates one number
very close to zero, and all other values as large negative numbers. We assumed that
a pretty uniform distribution of class probabilities exist, which was not the case and
hence both the L1 and L2 distance measures for evidence selection failed.
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Further, the multinomial model prefers long documents. Results of evidence se-
lection were good as long as the candidate evidences were long documents. However,
these distance measures often came up with low scores for non-winning classes in
case of short documents. This led us to observe that in the case of short documents,
they were often bad instances from the Web. These short documents often turned
out to be either URI redirects or javascript and messages about browser incompati-
bility. This led us to an important data cleaning decision of removing all very short
documents from the dataset. Details about these and other experimental related
implementations are discussed in section [3].

These reasons motivated a search for a better method to define similarity of doc-
uments in the classification space. We had to somehow neglect the actual probability
values, and at the same time not ignore the relative ranking of the classes.

Ranked correlation: Ranked correlation neglects the probability scores and takes
relative ranking into consideration. Apart from the same top class, relative ranking
of the top few classes is a good indicator of similarity between documents. While
choosing evidences from a set of candidates, we are more concerned about a class
slipping from the 2nd to the 5th position in the sorted order of classes, than a class
slipping from 19th to 20th position.

In this method, we transform the c-dimensional class probability vector to a c-
dimensional discrete valued vector by putting in the ith co-ordinate, the position of
the ith class in the sorted order of class probabilities. So, for an instance with 6
classes, the class probability vector is transformed as

(−101, 0, −36, −5, −254, −67) ⇒ (4, 0, 2, 1, 5, 3)

Following this we take the L1 distance between these transformed set of points cor-
responding to t and e.

Ranked correlation across top k classes: This particular transformation de-
scribed above can be done on the entire vector or only upon the top k classes. Con-
sidering only the top k classes is more interesting because we are more interested
in the way those classes are confused which are close together on their probability
scores and are equally likely to have lost out from being the winning class. Thus
it is important to capture the fact that the class which got predicted as the second
most likely class for the test instance, is the fifth most likely class for the evidence
instance. Capturing a similar phenomenon for the least likely class between the test
and evidence instances is not equally important.

Clustering of training instances: Consider a large site which has many thou-
sands of training documents. On the Web scale this is very common. Applying any
online evidence selection method across all training documents at query time, will
be very time consuming. We note that clustering[5] of documents based on class
probability vectors is an optimization that can be well utilized. Such a clustering
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can be followed by storing only a fixed set of representative evidences from each clus-
ter. When a new test instance arrives, we determine the cluster of that instance
and choose from the stored representatives those l instances that are closest to the
test instance in the classification space having the same class prediction. The basic
requirement here is to return the instances that are close to the test instance in the
decision space not necessarily in the data space.

2.3 Choosing the site with the best evidences

Once each site draws up a set of evidences, we face the problem of selecting the site
with the best evidences. This problem is very different from the evidence selection
problem. In the prior case we had internal information of the classifier in the form
of the class probability vector. Practically, evidence selection is left to the classifier.
We now face the more difficult job of selecting the site with the best set of evidence
without any information other than the evidences themselves.

For this we define a proximity measure on a per site per evidence basis. The
querying site by itself cannot use a distance measure to establish proximity because
that is part of the learning problem for which it is asking external help. This proximity
is a measure based on the votes other sites give to each evidence. The proximity
measure is addressed using the prediction expertise of the other sites to challenge
the evidence of its peer. The querying site coordinates this challenge process and
therefore the participating sites cannot even distinguish between a normal test case
and an evidence case. Thus, the sites do not have to know of each other’s existence.
An evidence is good if all sites give it the same prediction as they gave the test
instance. This intuitively holds true irrespective of whether that prediction is correct
or not because that document is thus very close to the test instance.

Proximity or distance between instances is not a very easily answerable problem
in this setting. In a supervised learning setting, the only distance that makes sense is
belongingness to the same class - otherwise distance and classification are the same
problem. It would be meaningless to define distance independent of classification.
Thus each evidence gets attached with a proximity value to the test instance, calcu-
lated through democratic means. For each evidence the true class label is also known.
The site that originated that evidence will know its true class label as it originates
from its training dataset. This class label is used with the votes of the other sites to
define proximity.

Proximity is measured as follows. Every time a site gives the same prediction to
both the test and an evidence instance, it is implicitly voting for the relevance of this
evidence. We define at each site, the proximity of an evidence e as the fraction of
sites which gave e the same class label as their own prediction for t. We now look at
some methods of combining the votes of others sites on a sites’ evidences.

Site-based method: We define a constant proximity increment at each site. This is
1/(#sites−1). For each evidence of each site, when any other site gives this evidence
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e and the test instance t the same class label, then the proximity of that evidence is
incremented by the proximity increment. Thus the proximity of each evidence to the
test instance t ranges from 0 to 1. When proximity is 0, this is interpreted as the
evidence being very bad because it is not at all like the test instance. On the other
hand if the proximity is 1, then all sites label it the same as t and hence the evidence
is deemed to be very good.

The constant increment method does not perform well in certain situations. Con-
sider 3 sites voting for the test instance T and two evidences E1, and E2 of some
other site. For the test instance T , the site-based prediction vector is ~T = {c1, c2, c3}.
This means that the first site votes for class 1, and the next two sites vote for class
2. Similarly, ~E1 = {c2, c1, c2} and ~E2 = {c3, c1, c2}. The constant increment method
gives the same proximity score of 0 to E1 and E2 whereas intuitively E1 is a better
evidence. E2 contains a prediction for c3 which is a totally different class. This leads
us to another method for proximity described below.

Class-based method: We initialize a new vector to zero values, whose size is equal
to the number of classes. There is one such vector for the test instance t and each
evidence e, which are called T , and E respectively. The vector for T is initialized to
~T = {0, 0, . . . , 0}. As each site votes on t or e to belong to class c, the cth value in the
vector is incremented by 1. After all sites have voted upon each e, the absolute vector
difference between T and E is taken. This vector difference gives a distance measure
between the documents. This distance is divided by 2 ∗#sites to normalize between
0 and 1. Finally the proximity is calculated by subtracting the distance from 1.

diff = Σi=C
i=0 |~Ti − ~Ei| ; proximity = 1− {diff/(2 ∗#sites)}

Again this proximity is normalized from 0 to 1 and is interpreted the same way as in
the previous method.

The vector difference method also falls short in some situations. If sites agree
on the top predictions of evidences, then choosing evidences of a particular site is
very hard. If a particular classifier is strongly biased towards a particular class, it’s
evidences on that class will be agreed upon by other sites. However, it is likely to mis-
classifiy the evidences of other sites whose true class is an unfavourable class according
to it’s bias. Moreover, in this method, sites can invert predictions of successive
evidences and the prediction vector will remain the same. Also, information that a
site very often confuses between two given classes is very important to factor into the
algorithm. A confusion matrix is the best structure to utilize this information about
confusing classes.

Confusion Matrix method: Rather than considering only the top prediction of
each site for the evidence, we can also take into account the site-wise confusion matrix
to assign real valued proximity increments to each evidence. One restriction that we
must bear in mind is that we can not take or assume any training summary data
from any of the participating sites. For example, we can not take the training time
confusion matrix from each site as it is validated over all its training documents.
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This will violate our requirement of site autonomy. Thus the only confusion matrix
we can build is that which we can gather at the time the evidence exchange phase
goes on. As each site outputs its predictions on the evidences, the querying site
can construct a site-wise confusion matrix. A confusion matrix is prepared for each
site and records the predictions other sites on its evidences. The class label of the
evidences is known, because each site pulls out evidences from its training data.
Now, for each evidence, the proximity increment is a real-valued fraction of original
proximity increment of 1/(#sites − 1). This is weighted by the confusion matrix
entry which gives the fraction of times that sites agree on predictions of that site.
Again this is a normalized proximity value and interpreted same as in the previous
cases.

2.4 Advantages and disadvantages of the Evidence-

Boosting method

Advantages:

• We don’t make any assumptions about the local classification method.

• It is not required that the site maintains the entire training data during model
deployment and can even be unaware of the existence of other sites.

• Bad classifier sites are automatically given low weight on their predictions by the
very nature of the algorithm, because of the quality of evidences they produce
in the cross-validation phase.

• Speciality classifiers automatically get a high weight on grounds of better evi-
dences and are thus favoured.

Disadvantages:

• The most important drawback is the large amount of document transfer re-
quired. For classifying one document, we are possibly transporting and classify-
ing an order of magnitude more number of documents across various distributed
sites.

• A site can play mischief by always returning a constant class label and the same
set of documents as evidences, irrespective of the test instance. An overhead
will be incurred to keep this in check.

• This algorithm works only for inductive learning where a site cannot predict a
class unless it has seen at least a few examples from that class.
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Experiments

3.1 The data sets

For evaluating the Evidence-Boosting algorithm we performed experiments using some
real life datasets. Specifically two datasets were chosen with very different character-
istics. Both the datasets required data cleaning operations, which are subsequently
described. We chose the 20 newsgroups dataset available from UCI KDD repository,
and part of the Recreation directory subtree from the ODP.

3.1.1 The 20 newsgroups datasets

One interesting and standard dataset often used for text mining is the 20 newsgroups[7]
dataset. It is a collection of 20, 000 newsfeed articles which are 1, 000 articles each
taken from 20 usenet newsgroups. These 20 newsgroups form a diverse set of top-
ics to make text classification interesting. Some of the included newsgroups are
highly correlated like alt.atheism, and talk.religion.misc. Some of the newsgroups
are very different with seemingly no relation amongst them like rec.sport.hockey, and
talk.politics.guns. The strong correlation between some groups is apparent from the
confusion matrix of the training articles on any classifier. Evidence selection is thus
a challenging phase. We take the ranked correlation evidence selection approach
discussed in section [2.2].

Cleaning the data: The home site for the 20 newsgroups dataset explicitly warns
about the requirement of data cleaning. The articles contain news headers with many
fields not being of any relevance to classification. Examples of these fields are: Path,
Lines, Message ID, NNTP-Posting-Host, References etc. On the other hand there is
a field called Newsgroups, which identifies the class of the article. We thus remove all
these fields from the headers of all articles. We however retain some fields like From,
and Organization as these fields can be useful for classification. The names of these
fields are however stripped and only their content is retained.

Another cleaning operation we do is removal of all words lesser than two characters
as these are often occurring words which do not help in classification like a, an, or.
We also remove stopwords like and, but, with.

15
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3.1.2 The ODP’s Recreation subtree

The second dataset we use is a set of webpages collected from the pages listed in
the Recreation subtree of the ODP directory. The Recreation subtree contains 39
categories like Air Hockey, Antiques, Kites, Guns, Motorcycles, and Collecting, which
have documents varying from 12 to sometimes over 6, 000 in number. Due to the large
variation in number of documents, we select an average size sample of 9 classes with
500 to 2000 documents. The classes we consider are Amateur Radio, Birdwatching,
Boating, Guns, Kites, Living History, Models, Roads and Highways, Scouting. For a
given class we consider all documents rooted at that node, including documents in
any subcategory that it might have. A similar observation about correlated classes as
in the previous section can be made here for classes like Scouting, Guns, and Amateur
Radio.

Cleaning the data: The cleaning phase for this dataset was more exhaustive. We
cleaned the documents of all HTML tags and words up to 2 characters in length. A
further cleaning step was required in this dataset. Since we crawled the ODP directory
tree at a particular time, often the documents fetched were either URI re-directors,
page not found messages, browser incompatibility messages, or frame and javascript
code. All these documents were noticed to be very short and hence we discarded all
documents below 300 bytes in length including whitespaces. This was a tradeoff as it
is likely that we may have overlooked a small number of documents which were very
relevant, crisp and to the point about a particular subject. However, we justify our
actions by claiming that it is very unlikely that such crisp but very short documents
will get listed in the ODP after its strict policy of human-review and including only
good-quality, good-content documents. A further step was the removal of common
stopwords, browser related words and HTML phrases like and, but, with, Microsoft,
Internet, Explorer, Netscape, Navigator, nbsp, quot.

3.2 Experimental setting

The experiments were conducted in a simulated distributed site setting. Different
classifiers representing different sites were run on the same machine. The classifiers
used the Naive-bayes method of text classification using the multinomial model[2]. For
all classification purposes, the training and test data were obtained after a standard
70-30 split. The 70% of the data was then split across all the participating sites.
All experimental test measurements as reported in section[3.3] were those which were
obtained on the remaining 30% of the split data. The evidence selection method
used in the experiments was the ranked correlation method discussed in section[2.2].
After selection of evidences, the site with the best evidences was chosen by using the
class-based method discussed in section[2.3].

Test Parameters: The tests were performed on various combinations of the pa-
rameters listed below and experiments on these settings were conducted on both our
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Method 1 2 3 4 5 6 7 8 9 Average
MAJ 90.1 62.4 87.4 88.7 78.0 47.5 30.7 88.5 90.5 73.8
EB 89.3 63.3 87.8 88.5 79.7 59.6 52.6 89.2 91.4 77.9

ALO 94.2 79.6 97.6 95.7 88.5 75.6 69.0 92.4 95.5 87.6

Table 3.1: Web, s=5, e=5

datasets.

• Number of Sites: Various settings for this parameters included values like
2, 3, 5, 7, 10, 12, 15. The default setting was 5 sites.

• Number of Evidence: Various settings for this parameters included values
like 1, 2, 5, 7, 10. The default setting was 5 evidences.

3.2.1 Benchmarks

All results of the above configuration of the Evidence-Boosting algorithm are compared
with the following two benchmarks.

• MV: A Majority or Plurality voting scheme is implemented as an alternative
scheme.

• ALO: Additionally we compare our results with an At Least One scheme where,
a hypothetical meta-learner will automatically select that site which outputs the
true class label of the test instance as it’s top prediction. This scheme is an
upper bound on performance since if no site correctly predicts the true class
label of the test instance, then no combination of the distributed models will
yield the right answer.

3.3 Results

EB denotes the Evidence-Boosting algorithm. MV denotes the Majority or Plurality
voting scheme. ALO denotes the At Least One method. All the results are re-
ported as tables for both the datasets. The 20 newsgroups dataset has 20 classes
and figures are the average figures across all classes. The Web dataset has 9 classes
with figures reported for the average over all classes. Variations of the various pa-
rameters as in section[3.2] is given along with each table. s = number of sites,
e = number of evidences, News denotes the 20 newsgroups dataset, and Web de-
notes the Web dataset. Table 3.1 gives the details of the Web dataset in a setting of
5 sites, and 5 evidences.
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Number of evidences 1 2 5 7 10
MAJ 84.1 84.1 84.1 84.1 84.1
EB 85.1 85.3 85.6 85.5 85.5

ALO 92.5 92.5 92.5 92.5 92.5

Table 3.2: Web, s=5

Number of evidences 1 2 5 7 10
MAJ 75.6 75.6 75.6 75.6 75.6
EB 75.3 75.9 76.8 76.3 76.8

ALO 87.7 87.7 87.7 87.7 87.7

Table 3.3: News, s=3

n 2 3 5 7 10 12 15
MAJ 76.4 78.3 79.1 79.7 80.5 81.9 80.6
EB 78.7 80.2 82.1 82.6 83.7 84.5 84.4

ALO 84.2 86.8 90.7 92.8 94.5 95.0 94.6

Table 3.4: Web, e=5

n 2 3 5 7 10
MAJ 44.3 46.8 52.1 55.5 57.2
EB 49.1 51.5 56.7 61 63.4

ALO 60.2 67.1 77.9 83.4 87.9

Table 3.5: News, e=5
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3.4 Observations

A few observations can be made about the results of the experiments. We list the
main observations below.

• If we keep the number of sites constant and vary the number of evidences,
the accuracy of our Evidence-Boosting approach increases. The accuracy for
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the MV and ALO methods remains constant. This is observed for both the
datasets. This can be explained by the fact that the evidences are not taken
into account by either the MV or the ALO methods. For Evidence-Boosting
however, varying the number of evidences changes the weight of each site. As
the number of evidences increase, accuracy improves as the site with more and
more good evidences gets more positive votes from the other sites in the cross-
voting phase.
We keep the number of sites as 5 for the Web dataset and 3 for the News
dataset. For the Web dataset, when evidences are increased from 1 to 10,
accuracy increases by 0.5% and then steadies. For the News dataset, when
evidences are increased from 1 to 10, accuracy increases by 1.5%.

• In the other setting, we distribute all available training data across the max-
imum number of sites and train the classifiers. Testing is then done over a
random subset of sites. For the Web dataset we use 15 sites, and for the News
dataset we use 10 sites.
For the Web dataset accuracy of Evidence-Boosting gets boosted from 78.7% to
84.4%, while accuracy of MV gets boosted from 76.4% to 80.6%, and accuracy
of ALO gets boosted from 84.2% to 94.6%. The gap between EB and MV in-
creases from 2% to 4%.
For the News dataset accuracy of Evidence-Boosting gets boosted from 49.1%
to 63.4%, while accuracy of MV gets boosted from 44.3% to 57.2%, and accu-
racy of ALO gets boosted from 60.2% to 87.9%. The gap between EB and MV
increases by 1.4%.
In both cases EB performs better than MV with its advantage increasing with
number of sites. ALO also gets boosted in both cases as is to be expected.
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Related Work

All prior work in combining classifiers in a distributed mining setting can be grouped
along two orthogonal dimensions. One of these dimensions is the requirement of a
separate meta-learning phase. This is a training phase over the results of the learned
models. A learning run over a separate validation dataset is required. On the other
hand there are instance-based methods which choose from amongst many models
after seeing the test instance. This selection of models is either static or dynamic.

We first discuss the main methods and at the end we classify these methods on
the basis of these two dimensions.

Combiner: This method explicitly trains a new meta classifier using the predictions
of the component classifiers using a validation data set[3]. The meta learner can be of
various types depending on the set of attributes used for meta learning. On the one
extreme are meta-learners that use only the class predictions of the component models
for training and on the other extreme are those that use both the class predictions
and all the original input attributes. The latter are called Augmenters.

Plurality voting: In situations when one needs to select from multiple discon-
nected models in the absence of any synchronization or validation set, a majority or
plurality voting scheme is quite often a good scheme to follow. A simple majority
from among the output predictions is taken and selected as the answer. In case of
a tie in the number of predictions of various classes, a random set of agreeing pre-
dictions is chosen to be the right answer. In chapter [3], we use the Plurality voting
scheme as a benchmark to test our Evidence-Boosting algorithm against. We take it
to be a lower bound on performance accuracy and expect our algorithm to be at least
as good as, and better than this scheme.

Confidence of classification: Our notion of having a classifier output additional
information based on which we could establish the certainty of this classifier’s pre-
diction is related to some prior work on outputting confidence with classifiers. One
related approach[8] discusses the possibility of having classifiers output a prediction
only when they are certain and this requires each classifier to evaluate the amount
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of confidence or certainty it has in its classification. Confidence is a function of the
accuracy of the training data surrounding the test instance. We extended this notion
with another crucial factor of including the proximity of the training data to the test
instance. The proximity factor becomes particularly important for combining several
distributed classifiers. None of the previous work studies the ad hoc distributed set-
ting that we are concentrating on. Our distributed setting presents a new angle not
previously addressed, and that is making the confidence a function of the coverage of
the data around the test instance also.

Coverage-based approaches: The motivation behind these approaches is to cap-
ture the difference in the data space covered by each classifier. For each test instance
t it outputs a real-value that measures the coverage in terms of the concentration of
local training data around t. There are two approaches in this category.

• Independent-coverage approach: Coverage is measured using a two clas-
sifier system. The first classifier arises from the original classification problem
and the second is a new classifier that estimates the fraction of local training
data around the test instance. In an ideal setting training data for the second
classifier will consist of the union of training data (without the true class labels)
from all sites. Each site trains its local classifier by assigning class label “1” to
local training instances and ’0’ to all other instances from other sites. When
a new test instance arrives, each site returns along with its class prediction,
the coverage fraction from the second classifier. This fraction directly serves
as a weight of that site’s prediction. If the fraction is high, the site contains
a large number of training data around it, if the fraction is zero the instance
lies in a space where the local classifier has no training data, and therefore we
should ignore the prediction of that site. Such exchange of training data or
coverage information between sites and synchronization steps clearly violates
the autonomy requirement.

• The Relevant-coverage approach: We address the disadvantage of mea-
suring irrelevant proximity by integrating the second classifier with the first
one. Thus coverage of different regions by different classifiers is measured in the
classification space rather than the original data space.

The main problem of the coverage approaches is data exchange between the sites.
One solution to this problem is to exchange compact summaries of data across sites
instead of the raw tuples. However, since sites are allowed to change their models with
the addition or deletion of data, there is also the issue of how frequently should these
data summaries be exchanged. Due to this data exchange, coverage based techniques
do not meet our goal that sites need not be aware of even the existence of other sites.

SCANN: This stands for Stacking, Correspondence Analysis, and Nearest Neighbour
search. The basic premise of SCANN is to find out highly correlated dimensions in
a classification space and reduce the high-dimensional output sample space to a low
dimensional equivalent space of the highly correlated dimensions. SCANN relies on
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correspondence analysis to map the estimates of the learned models into a new rep-
resentation space upon which a higher level model is computed.

Stacking is used to generate extra data based on the predictions of the various
learned models. This is followed by a correspondence analysis step to find out the
highly correlated dimensions. In correspondence analysis, a scaled space is found
from auxiliary structures defined on the stacking data. Lastly, a nearest neighbour
method is used in this reduced dimensional space to predict the class label of the
test instance. Details of correspondence analysis and the SCANN algorithm can
be found in [4] where experiments on standard datasets are also discussed in detail.
Additionally, [9] discusses some typical statistical properties of standard datasets to
keep in mind before generalizing from the results of small experiments.

Nearest neighbor approach: We could have one site where a classification region
has 100% accuracy and another site where the accuracy is lower for the same region.
Yet if we have a test instance that is closer to the training instances of the second
site we would choose its prediction because we believe that the reason the first site
has higher predicted accuracy is not because it is a better classifier but because it has
not seen enough examples from the “confusion” region that the second site has seen.

The simplest approach is for each site to implement a nearest neighbor classifier
and along with the standard prediction, output for the given test instance the average
distance of the k nearest neighbors to it[6]. We then choose the prediction of the
site with the smallest average distance. Alternately, each site can return average
distances to each class within its k neighbors. The central site combines the distances
for each class and picks the highest weight class. The problem here is that a nearest
neighbour classifier is imposed on the system. Also, for meaningfully comparing
distances of different sites, we require different sites to use the same features and
distance metrics. Thus the goal of site autonomy is violated. Moreover presence of
members of confusing classes in a neighbourhood is not taken into account.

Classification of these methods: Consider the requirement of a separate training
phase over a validation dataset. Combiner, SCANN and the Coverage-based methods
are examples of approaches that require a separate training phase over a validation
dataset. Plurality voting and the nearest neighbour approaches do not require any
such phase.

We can also classify these methods on the basis of their being instance-based where
model selection occurs after the test instance is seen. SCANN, Nearest-neighbour
and the coverage based approaches are instance-based methods selecting the winning
model dynamically. On the other hand Plurality voting statically selects the winning
model.

We see the nearest-neighbour approach is the only method requiring no separate
training phase on a validation dataset. It also selects models dynamically after seeing
the test instance. However, this method has the drawback that all participating
classifiers are forced to be of the same kind.
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Conclusions

Implementing mining models as services on the Internet is a very useful idea. We have
seen many possible settings where document classification services could be useful on
the Internet. We have also taken some approaches in solving some of the issues
involved. More work needs to be done before this idea can be deployed in practice.

We have discussed the Evidence-Boosting approach by giving its details in chapter[2],
and have seen experimental evaluations. The Evidence-Boosting algorithm satisfies all
conditions of site autonomy, model independence and requires no training phase on
a validation dataset. It performs better than a Plurality voting scheme which is the
only known contender which can work in a setting where models are independent of
each other and selection is done after looking at the test instance.

5.1 Future work

This topic is flush with ideas for future work. The current approach is limited to a spe-
cific case of single-level classification. We would like the Evidence-Boosting algorithm
extended to work for an entire hierarchical classification setting. Better evidence se-
lection methods would increase the performance of our algorithm. We would also like
to consider confusing classes and secondary predictions of the classifiers involved.
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