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Abstract

Text classification is an active research area motivated by many real-world applica-

tions. Even so, research formulations and prototypes often make assumptions that are

not suitable for deployment. For example, in many real applications, the set of class

labels keeps evolving, continual user feedback must be integrated into the classifier,

and test documents may come from a population statistically different from the train-

ing distribution. The main aim of our work is to build solutions for these problems

using the idea of exploiting inter-class relationships.

We learn noisy, approximate, and probabilistic mappings between related classes

across label-sets in a semi-supervised framework we call cross-training. We exploit the

notion of confusion between closely related classes, study its effect on label hierarchies,

and present an algorithm for scaling up training of multi-class classifiers. We design

discriminative, multi-label classifiers that are robust in the face of significant overlap,

in terms of word distributions, between related classes. In many real applications,

the set of labels is not predefined but must be constructed from vague specifications

and a study of the corpus. Moreover, the label-set has to keep evolving as the corpus

changes. We propose an algorithm that supports such temporal evolution by detecting

classes in unseen data not defined during training. Our algorithm detects such classes

using new notions of coverage of label-sets, support and confidence in a classification

setting, and abstractions to represent documents. To enable continual interactive

learning and to incorporate human input, we present a framework for active learning

that combines terms and documents in a symmetric manner, reducing cognitive burden

on the trainer.

We conclude by proposing a new architecture for next-generation text classification

platforms that embodies the ideas and contributions in this dissertation. To summa-

rize, our work fills in conspicuous gaps between research prototypes and industry

requirements, by exploiting one central idea: class labels are mutable variates just like

words, documents and their assigned labels.
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Chapter 1

Introduction

1.1 Motivating applications

Text classification is the task of learning models of categorised collections of doc-

uments. These models are applied to new documents and one or more categories are

assigned by the system. Numerous text mining applications today use some form of

text classification and this has fueled extensive research in the area. Various tech-

niques like complex information extraction, feature construction through tagging and

shallow parsing, feature engineering, and representation choices are routine steps in

setting up classifiers. Efficient training and application, performance tuning, and

building understandable classifiers, are continuing fields of text classification research.

A few notable applications of text classification are outlined below.

Document (email) filtering and routing is a very important application in large cor-

porate settings. Spam filtering is perhaps the most common application that impacts

all of us, with Bayesian or rule-based spam filtering being a necessary component in

all client and server mail software. Web directories are an invaluable source of well

categorised information on a broad variety of topics on the web, and though manually

created for now, there are many applications using them for better information pre-

sentation and navigation. News filtering and other personalisation applications also

1



Chapter 1. Introduction 2

use some form of text classification. The vision of the semantic web has also brought

about a variety of advances in terms of standardisation and toolkits to deal with on-

tologies and markup languages. The latest surge of applications on the web include

social tagging of a variety of content and this poses many unsolved challenges to the

study of classification.

Several real-life projects reported at the Operational Text Classification work-

shops [LGM+03] describe applications that span law, journalism, libraries and schol-

arly publications. Surprisingly, automated batch-mode techniques did not perform

well in these settings. Substantial human involvement was required before a suitable

feature set and even label-set could be defined. Many classifiers including simple statis-

tical models and well-tuned rule-based systems were used in these systems. With lots

of systems engineering the accuracy attained in such systems was regularly reported

to be as high as 90–95%.

1.2 Past research in text classification

We summarise some of the important work in text classification research in this

section. One of the most significant developments in the last 10 years has been the use

of support vector machines (SVMs) for text classification by Joachims [Joa98]. SVMs

are discriminative classifiers well founded in statistical learning theory [Vap95] and

are accepted to be the most accurate. Newer work in text generation models like La-

tent Dirichlet Allocation (LDA) [BNJ02] and the Aspect model [Hof99] give intuitive

explanation of the document generation process. Text classification has been studied

in a variety of settings including in hierarchies, on-line learning, ensemble learning

and so on. Koller et al. [KS97] and Chakrabarti et al. [CDAR98] studied classification

of documents organised in hierarchies using discriminative and generative models re-
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spectively. Klinkenberg et al. [KJ00] studied concept drift, when the notion of a class

as determined by its documents changes over time. The machine learning wisdom

of using ensembles of weak classifiers to give strong competitive classifiers has been

applied for text by Schapire et al. [SS00] in their Boostexter system. A setting often

encountered in real-life is non-availability of labeled training data. For such settings

McCallum et al. [MN98b] proposed using unlabeled data for better parameter estima-

tion using the EM algorithm. In case human feedback is available, Cohn et al. [CGJ95]

proposed active learning to get instances labeled by humans to assist classifier training.

The missing link: One important aspect common to all the above pieces of work

is that the set of classes (label-set) used in the problem is taken for granted. The

label-set is assumed to be fixed and unchanging. We believe there is a lot to be gained

in treating classes as important entities in the system in addition to documents and

terms. Studying properties of sets of classes is one aspect that has been left out in

previous work. The main idea we propose in this thesis is that studying the label-

set, relationships between its classes, and evolution of the label-set as a whole is very

important in approaching a variety of challenging problems in text classification. We

elaborate this in the next section, after outlining the assumptions of existing text

classification setups.

1.3 Assumptions in text classification setups

The text classification process typically requires a set of documents tagged with

a pre-specified set of classes. This training data typically goes through some pre-

processing steps to convert the data into a form directly usable by a variety of

classification algorithms. The models learned on training data are used to make

classification predictions on unseen data; system accuracy is measured by the cor-
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rectness of these predictions. Chapter 2 presents background material on training,

validation, testing, pre-processing, representation, and evaluation in more detail.

Almost all text classification research assumes some fixed, simple feature repre-

sentation (such as bag-of-words), and at least a partially labeled corpus. Statistical

learners also depend on the deployment data to be reasonably related to the training

data. Many of these assumptions do not hold in real-life applications. Discrimination

between labels can be difficult unless features are engineered and selected incorporating

extensive human knowledge. The semantics behind labeling is liable to be ill-conceived

or at least obscure. There is often no labeled collection to start with, or the label-set

may not be specified up front, and must evolve with the user’s understanding of the

application.

The set of problems we work on arise from various assumptions underlying text

classification systems. Relaxing these assumptions in turn leads to a variety of different

problems and our work focuses on proposing novel solutions to these. Our main

approach in tackling these problems is identifying and exploiting various kinds of

inter-class relationships; this forms the central idea of our work. Some important

assumptions in text classification are outlined below:

• The size of training data for each class is known to directly impact the learnabil-

ity of the class. Hence all classification systems assume the existence of labeled

training data.

• The training and unlabeled (test) distributions of documents are assumed to be

similar. This is a valid assumption to make as it enables learning of classification

models that can be applied to new documents. The train and test distribution

of document streams is susceptible to change, either gradually or in bursts,

and systems need to adopt to these settings. An example is the news domain
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where new stories are generated over time corresponding to real world events.

In a classification setting, new classes may be introduced over time or existing

classes may become irrelevant.

• Another simplistic assumption in existing work is that classes are assumed to be

disjoint concepts. Ideally, all possible classes can be pre-specified such that it

is possible to come up with a representation of documents where discriminating

any class from the others is possible. Text documents rarely conform to rigid

class boundaries and are not generated by picking a class first and then sampling

class conditional word distributions. Authors typically mix concepts into a single

document, and different parts of the document may belong to different classes.

Thus, documents are realistically multi-labeled (belong to more than one class).

• Most existing research employs the bag-of-words (BOW) model to represent

documents. This model considers the occurrence of all tokens independent of

each other and is immune to phrases, treating ‘New’ and ‘Delhi’ as two features

instead of ‘New Delhi’ as one. In practice, this model is surprisingly found to

be about as good as other NLP based representations. The BOW model may

work well in terms of just classification accuracy, but there is a lot of value in

pre-processing text documents to identify phrases, named entities, visual prop-

erties of web documents and so on. Identification and exploitation of meta-level

features enables us to propose solutions to other interesting problems. Inter-

pretability and use of complex features is often as important as accuracy.

1.4 Novel applications - challenges and solutions

In this section, we look at some novel applications which result from clear informa-

tion needs of users in various settings. The main focus of our work was tackling these
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problems in a systematic way by treating classes and label-sets as important entities

and not take them for granted. We identify four relationships between classes. In gen-

eral this facet of relationships between classes and promoting the status of label-sets

in text classification systems has not been explored in the literature.

We propose four relationships namely, mappings, confusion, overlap, and coverage.

Learning mappings between related label-sets is an important problem to solve in e-

commerce and taxonomy maintenance applications. Scaling large multi-class problems

is essential to scale up various existing interesting prototypes to realistic scales and

we exploit confusion between classes for this. Multi-labeled classification is a reality

often ignored in text classification research and we aim to enhance the performance

of multi-labeled classification by countering overlapping boundaries of related classes.

We also look at the problem of bootstrapping text classification systems in their early

stages of construction. One aspect of this problem is tracking temporal evolution of

label-sets as they are being defined and use the coverage of existing label-sets to detect

this evolution. The other aspect is that of leveraging human expertise in the form of

document and term labeling using active learning principles in an interactive setting;

this naturally leads to feature engineering considerations. We describe these problems

in detail in the rest of this section.

1.4.1 Learning mappings between classes

The vision of the semantic web [BLHL01] is to universally facilitate information

interchange between entities on the web by providing machine understandable seman-

tics. A large effort on this front is in the direction of schema standards and ontology

specifications which hope to understand and link various kinds of documents. Content

creators on the web have no notion of a single catalog of universal labels to tag their

content. News producers, content management sites and blogs all have different, but
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sometimes related sets of labels or tags to annotate content. General as well as domain

specific topic directories (like DMOZ and Yahoo!) have evolved similar yet different

taxonomies of labels. Vendor and distributor catalogs in e-commerce are dynamic,

evolving, and need to be mapped onto each other. It is unclear if universal standard

taxonomies can emerge outside domain specific settings, and even for those settings

there is a need for consolidating legacy data into these standards. Text classification

could potentially help tag web content with unambiguous semantic annotations.

Documents are inherently conglomerations of subjective, ill-specified concepts. We

believe that any kinds of mappings between content-based taxonomies will be complex,

uncertain and noisy. One use of such mappings is to explore if better classifiers can be

constructed for a taxonomy B, if label assignments of documents in another related

taxonomy A are known or can be inferred. We introduce a general semi-supervised

learning framework called cross-training which can exploit knowledge of such label

assignments. Cross-training introduced in Chapter 3 generalises existing generative

(like naive Bayes) and discriminative (like SVMs) classification algorithms, while com-

paring favorably with their baseline accuracy. Other benefits of cross-training include

experience with encoding heterogeneous features for learning algorithms and a better

understanding of different kinds of mappings between taxonomies [SCG03].

1.4.2 Scaling multi-class classification problems

The phenomenon of confusion between classes in a classification setting leads to

mis-classification within a group of related classes. This is the result of either obscure

or insufficient specification of the label-set or falls out of an insufficient feature selec-

tion and representation mechanism. The occurrence of certain keywords in documents

does not always follow our intuitive separation between class concepts. The bag-of-

words model typically employed to represent documents further leads to overlapping
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concept clouds in term-dimensional vector space. Such confusion between concepts

leads to erroneous classification not only in computer systems, but also for humans

- controlled studies involving humans classifying content show high disagreement be-

tween human labelers [LYRL04].

One way to mitigate the effect of confusion in large text collections has been to

organize classes into hierarchies. The hope in such a hierarchical organization is that

different features will be active in different parts of the hierarchy, and it should be

possible to build high performance classifiers using such a hierarchical class struc-

ture. Multi-class classification results comparing such hierarchies (Pachinko machine

classifiers [KS97]) against flat classifiers built only on leaf nodes have proved inconclu-

sive except in special cases. Hierarchies suffers from multiplication of errors at each

level as classification proceeds down from general to specific classes. In Chapter 4,

we develop the notion of confusion amongst classes and present an efficient algorithm

called GraphSVM for constructing a scalable multi-class classifier on leaf nodes that

turns out to be competitive or even better than multi-class classifiers while being

significantly better in training time and memory requirements [GSC02].

1.4.3 Enhancing multi-labeled classification

Another problem related to confusion and overlapping class boundaries is that of

multi-labeled classification. Most applications require the ability to classify documents

into one out of many (> 2) classes as often it is not sufficient to talk about a document

belonging to a single class. Based on the granularity and coverage of the set of classes,

a document is often about more than one topic. A document describing the politics

involved in the sport of cricket, could be classified as Sports/Cricket, as well as

Society/Politics. When a document can belong to more than one class, it is called

multi-labeled. Multi-labeled classification is a harder problem than just choosing
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one out of many classes. In addition to estimating the classes a document belongs

to, the additional problem is to determine how many classes are relevant for the

document in hand. The problem is compounded because closely related classes often

have overlapping class boundaries because they share many common features which

would otherwise help discriminate the classes.

In Chapter 5 we present algorithms which use existing discriminative classification

techniques as building blocks to perform better multi-labeled classification. We pro-

pose two enhancements to existing discriminative methods. First, we present a new

algorithm which exploits correlation between related classes in label-sets of documents;

this is similar to our work on cross-training in Chapter 3. Next, we present two meth-

ods of improving the margin of SVMs for better multi-labeled classification. We show

experimental results comparing various multi-labeled classification methods.

1.4.4 Bootstrapping text classification systems

An important set of challenges in development and deployment of text classification

systems is bootstrapping new systems as and when they are being constructed. We

observe that such bootstrapping can happen at various levels and we study these

problems and propose novel solutions. Bootstrapping label-sets could be required

when the data as well as the user’s understanding of the application evolves over time.

Learning in the presence of very limited labeled data (labeled documents) also poses

the problem of bootstrapping classifiers by incorporating human labeling.

One of the major assumptions in text classification research [Joa98, NLM99, ZY03]

is that statistical learners assume the deployment data to be reasonably related to

the training data. This assumption does not hold in many real life systems. Thus,

an important challenge in building text classification systems is recognising that the

constitution of unlabeled data changes over time. Often new classes are introduced
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and need to be detected and folded into the system. We call this the evolving label-

set problem. We propose the notion of coverage that looks at whether a given label-set

captures the spread of topics that documents in a corpus are about.

For example, consider a classification problem with n classes, where the classes are

documents about certain countries (India, US, UK, . . .). Over a period of time, a new

country’s documents (say Australia) are introduced into the system. The evolving

label-set problem is to detect such (one or more) new classes, propose a cohesive set

of documents for training the new classes, get user for validation about these fitting in

with the label-set, and fold these new classes into the classification system. The exist-

ing label-set here does not cover all the countries that the given set of documents are

about and the label-set needs to be expanded to increase its coverage. Such problems

occur especially when a nascent classification system is built from scratch and the set

of labels evolves over time with the user’s understanding of the application. We design

algorithms for identifying new classes in both generative and discriminative settings

in Chapter 6. We introduce the notion of abstractions to capture the importance of

terms not encountered during training, and also to provide a representation that more

intuitively reveals the classification criteria to the user. We also present a method for

automatically triggering detection of a new class in unlabeled data by the system.

There is much scope for building machine learning tools which engage the user

in an active dialog to acquire human knowledge about features and document labels.

When such supervision is available only as label assignments, active learning provides

clear principles [CGJ95, TK00, FSST97] and strategies for maximum payoffs from the

dialog. We wish to extend the active learning paradigm significantly to include both

feature engineering and document labeling conversations, exploiting rapidly increasing

computing power to give the user immediate feedback on her choices. One of our main

goals is to amplify human effort through machine learning, thus scaling up data sets
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that can be practically processed.

1.4.5 Next generation text classification platforms

Almost all machine learning text classification research assumes some fixed, simple

class of feature representation (such as bag-of-words), and at least a partially labeled

corpus. Discrimination between labels can be difficult unless features are engineered

and selected with extensive human knowledge. Several real-life applications in various

domains note that batch-mode techniques are not satisfactory; substantial human

involvement is required before a suitable feature set, label-set, labeled corpus, rule

base, and resulting system accuracy is attained. However, not all the techniques used

in commercial systems are publicly known, and few general principles can be derived

from these systems.

We propose a new architecture for next-generation text classification platforms that

embodies the ideas and contributions in this dissertation. Our work fills in conspicuous

gaps between research prototypes and industry requirements, by exploiting the central

idea that class labels are mutable variates just like words, documents and their assigned

labels. We feel the time is ripe to architect such a next generation platform for

text classification that addresses some of these differences in perception between the

research and industry communities. The focus of our work has been to promote

the status of classes and label-sets in text classification settings by discovering and

exploiting inter-class relationships and also exploring the problem of bootstrapping

nascent text classification systems. In Chapter 7 we propose a architecture for a

next-generation platform that is built upon three main entities, (1) document and

classification models, (2) feature engineering components, and (3) label-sets, and the

interactions between these three. We would not like to take classes for granted and

would like to structure our applications around label-sets and their relationships. All
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our work explained above neatly fits into the architecture of such a proposed platform.

We have had good initial success in building a prototype of such a platform called

HIClass (for Hyper Interactive text Classification) described in Chapter 7. HIClass is

an interactive workbench that provides a tight interaction loop between human experts

and statistical classifiers. We extend SVMs to naturally absorb human inputs in the

form of feature engineering, term inclusion/exclusion and term and document labels.

In the past, such actions were performed through ad hoc means and as a distinct

processing step before classification construction. We make these more effective by

(1) providing the user easy access to a rich variety of summaries about the learned

model, the input data and aggregate performance measures, (2) drawing the user’s

attention to terms, classes or documents in greatest need of inspection, and (3) helping

the user assess the effect of every choice on the performance of the system on test

data. These are some of the interaction mechanisms a full-fledged next-generation

text classification platform should contain and we discuss other such requirements in

detail.

1.5 Point wise summary of contributions made

In this report, we explore and devise a range of algorithms to solve real-world

text classification problems. The main focus of our work is exploiting inter-class

relationships; this has been a neglected area of text classification research. We iden-

tify four relationships between classes: (1) we learn and exploit mappings between

label-sets to help build better classifiers and taxonomy maintenance tools, (2) we

exploit confusion and present techniques to handle scalability issues in large text

collections, (3) we present algorithms to overcome overlap to enhance discriminative

multi-labeled classification, and, (4) we introduce the notion of coverage of label-sets
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to detect temporal evolution of label-sets by detecting new classes in unlabeled data

that were not present during training. We also focus on problems related to bootstrap-

ping text classification systems with challenges of lack of well defined label-sets which

evolve over time (point 4 above) and low availability of labeled training data to learn

models from. We significantly extend document and term level active labeling con-

versations to harness human expert labeling knowledge while exerting little cognitive

load on the user.

Our work promotes the importance of classes as mutable entities in text classification

systems along with documents and features. Our work revolves around treating classes

as first level entities and exploiting different inter-class relationships. We present an ar-

chitecture for general-purpose text classification platforms as we feel the time is ripe

to bridge the gap between academia and industry perceptions of text classification

systems, actively integrate human knowledge, and relax many of the standard as-

sumptions.

1. We present a general semi-supervised framework called cross-training in Chap-

ter 3 to learn noisy, approximate, and probabilistic mappings between label-sets.

2. We design generative algorithms for cross-training called EM2D with variants.

EM2D builds upon NB and decisively learns better classification models. EM2D

results in better classifiers for both taxonomies and finds interesting mappings

between the constituent classes. The results in terms of accuracy improvement

are good.

3. We design a discriminative cross-training algorithm called SVM-CT. The use

of SVM-CT for augmenting and maintaining taxonomies has definite potential;

some examples of mappings between label-sets for taxonomy maintenance tools

are shown in the appendix.
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4. Closely related classes have overlapping class boundaries and confuse classifiers.

This results in lower accuracy and forces construction of time-consuming, re-

source intensive classifiers. In Chapter 4, we exploit this notion of confusion

among similar classes.

5. We study confusion matrices in detail and presented an algorithm for automati-

cally generating a hierarchy of classes from a given flat set based on classification

similarity of classes. This output is in the form of a dendrogram of classes; there

are some examples in the appendix. We present a method to create hierarchical

classifiers using these dendrograms.

6. We present the GraphSVM algorithm to tackle the problem of scalability of

efficient multi-class classifiers like SVMs. GraphSVM builds on the confusion

matrix of a fast moderately accurate classifier like NB and produces efficient

SVM ensembles with lesser training data by exploiting the confusion between

classes. It performs as well or better than SVMs trained on all data but is many

times faster and needs much less memory.

7. Discriminating between closely related classes is hard as they often share impor-

tant features, and their class boundaries are fuzzy, and overlap with each other.

In Chapter 5, we propose algorithms for better multi-labeled classification with

discriminative methods. Our algorithms performed better than usual methods

on different accuracy measures and we gave interpretable mappings between

correlated classes within label-sets.

8. We present an algorithm to exploit correlation between classes along the lines of

cross-training. We also present algorithms to improve the separating surface of

discriminative learners by altering data close to decision boundaries.
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9. Bootstrapping text classification systems in the presence of limited training data

is an important area of research. We propose algorithms to deal with temporal

evolution of label-sets, document and term labeling, and feature engineering in

Chapter 6.

10. Topics covered in a classification system change with time and new classes need

to be discovered and folded into the system. We propose the novel idea of using

abstractions for better representation of documents to help the user get an idea

of the coverage of the label-set and estimate fit of proposed new classes into the

existing label-set.

11. We propose generative and discriminative methods based on notions of support

and confidence respectively to propose a candidate set of unlabeled documents

for consideration for adding a new class in the label-set. We also propose heuris-

tics for the system to automatically trigger on detection of new class candidates

in unlabeled data streams. Our algorithms do well in terms of precision of sug-

gested classes and also show low triggering error rates.

12. We present a multi-class multi-labeled framework for active learning of docu-

ments using linear additive models like SVMs. We present many aids for reduc-

ing the expert user’s cognitive load; these aids include bulk labeling, ranked list

of suggested labels, and conflict checking.

13. We introduce the novel idea of active learning on terms (instead of documents).

In the initial stages of classifier construction when very few documents are avail-

able, our method is able to identify a good set of features for human labeling

from the unlabeled pool of data.

14. We present a new OLAP-like interface for the user to browse term-document-
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class matrices of learned models. The user can drill down on documents for

influence of certain features on certain classes or vice-versa. Anywhere in this

interface, the user can engineer features using add/delete/ignore directives for

certain features which are obviously indicative (or not) of certain classes. This

feature engineering component is an interesting way for incorporating rule-bases

and human knowledge into classification models like SVMs.

15. We propose a new architecture for next-generation text classification platforms

that embodies the ideas and contributions in this dissertation. Our work fills

in conspicuous gaps between research prototypes and industry requirements, by

exploiting one central idea: class labels are mutable variates just like words,

documents and their assigned labels. We see how this naturally gives rise to the

many applications we have worked on in different parts of this report.

16. We describe our experience in building HIClass, an interactive text classification

workbench along the lines of such a platform. Our experience has been extremely

fruitful and we could achieve many of the desirable characteristics we aimed

for. We provided heavy interaction with experts while exerting a low cognitive

load, and could bootstrap classification system very well after starting with very

little training data. We were able to facilitate interaction between humans and

systems, leveraging human expert knowledge and the data processing power of

machines.

1.6 Organisation of the report

We present some background material common to all our work in Chapter 2 where

we review document corpora, representations, classifiers, and evaluation techniques.

We present the cross-training framework in Chapter 3 where we introduce the notion
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of mappings between classes across taxonomies. In Chapter 4 we present the notion of

confusion between classes and use it to study hierarchies and design scalable efficient

training techniques for multi-class classifiers. We present overlap as the third kind of

inter-class relationship in Chapter 5 and we design better discriminative methods for

multi-labeled classification by overcoming overlap. In Chapter 6 we explore issues in

bootstrapping text classification systems. We introduce the notion of coverage of a

label-set to track changes in distribution of unlabeled data by detecting new classes

introduced in the system. We present active-learning based methods (on documents as

well as features) to bootstrap classifiers built on very little training data. We propose

a broad architecture for next-generation text classification platforms in Chapter 7 and

describe our initial experience with building such a system. We include related work,

a discussion, and a summary with every chapter. Finally, we conclude this report in

Chapter 8 and point out some avenues for future work.
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Chapter 2

Background on text classification

In this chapter we review some background material for studying text classification

problems. This material and notation is common to all systems developed and used

in our work. It is required background to reading most work in text classification

literature.

2.1 Problem setting

The text classification task is typically one of learning models for a given set of

classes and applying these models to new unseen documents for class assignment. The

given set of classes is called the label-set and for each class in the label-set a set of

representative documents is provided as training data. Machine learning algorithms

use this training data from all classes to construct various types of statistical or rule-

based models. These models are applied to unseen documents which are presented for

label assignment. We note here that there exist another kind of leaning models called

lazy learners, like k-nearest neighbour classifiers, that don’t actually learn any models

but assign labels to unseen documents based on the label assignments of their neigh-

bours. In the rest of this thesis we use classification and categorisation synonymously.

Similarly, the terms class, label, and category are used interchangably.

19



Chapter 2. Background on text classification 20

The label-set is either a flat set of classes as in simplistic email routing. A more

intuitive and managable organisation for large sets of classes is a hierarchy or taxonomy

of classes. A taxonomy is typified by large web directories like Yahoo! 1 or DMOZ 2.

These taxonomies represent all world knowledge at the root of the tree-structure and

specialise into topics like Sports, Science, News, Recreation at the first level. Further

specialisation at the second level has classes like Football and Cricket under Sports,

Physics and Chemistry under Science and so on. Such taxonomies can be arbitrarily

deep although most researchers prefer dealing with a small number of levels or even a

flat organisation of classes and ignore the taxonomy.

The label-set is denoted C, with individual classes denoted c1, c2, . . ., cn or simply

c for a total of |C| = n classes. Unless otherwise stated we deal with a flat set of

classes. The simplest classification problem involves differentiating a class of interest

from uninteresting documents. Here n = 2. When n > 2 we have a multi-class

classification problem. Here documents can belong to one of n classes but every

document can belong to only one class. When a document can belong to more than

one class at a time, we have a multi-labeled classification problem. For example, a

document talking about politics in the sport of cricket today, belongs to the Politics

and Cricket classes. Note that multi-labeled problems always have n > 2 and are thus

also multi-class problems. However not all multi-class problems need to be multi-

labeled and are usually not unless otherwise stated.

2.1.1 Pre-processing

Typically while building text classification systems, the pre-processing steps in-

clude various complex information extraction steps. Feature engineering through var-

1http://www.yahoo.com
2http://dmoz.org
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ious natural language processing (NLP) tasks like named-entity (NE) tagging, shallow

parsing, part-of-speech (POS) tagging, and phrase-level chunking is common. The

choice of representation for text documents is important before invoking any learning

method. Efficient training and application, performance tuning, and building under-

standable classifiers are all continuing fields of text classification research. We look at

some more details of pre-processing in Section 2.2.

2.1.2 Types of classifiers

The two broad types of classification methods are discriminative and generative.

Discriminative methods like SVMs or logistic regression (LR) [ZY03] are two-class

classifiers that find separators between documents of two classes in some space of repre-

sentations. Other discriminative models include maximum entropy methods [NLM99]

and boosted decision trees in the ADABoost framework [FS99]. Generative methods

are typified by naive Bayes (NB), the Aspect model [Hof99], Latent Dirichlet Allo-

cation [BNJ02], and the more recent BayesANIL [RCKB05]. Discriminative methods

are widely accepted to be more accurate, but generative methods provide intuitive

text generation models and have been used in a variety of applications.

The industry has also made significant advances in the development and deploy-

ment of real-world high-performance text classification systems [LGM+03] using com-

binations of rule-based, hand-tuned, and statistical techniques. However, not all the

techniques used in commercial systems are publicly known, and few general principles

can be derived from these systems.

Outline: We have described the text classification problem setting in Section 2.1.

Next in Section 2.2 we look at details of any text corpus or collection of documents.

We review the features used in the text classification setting in Section 2.2.1 and
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Section 2.2.2 and look at various representation issues in Section 2.2.3. Next in Sec-

tion 2.3 we look at the actual classification algorithms used for learning models of

classes and take a look at training and prediction procedures. In particular we look at

the naive Bayes (NB) classifier in Section 2.3.1 and support vector machines (SVMs)

in Section 2.3.2. Section 2.4 contains details on standard methods of evaluation used

for text classification systems. In Section 2.4 we look at common evaluation method-

ologies based on various measures outlined in Section 2.4.1. Some commonly used

benchmark text datasets are described in Section 2.4.2.

2.2 Document Corpus

The corpus of documents containing the training and unlabeled data is denoted

D. The training documents are denoted T and unlabeled documents are denoted U ,

hence D = T ∪U . An individual document is denoted d or the ith document is denoted

di. Next, we look at features of documents used in classification algorithms following

which we take a look at representation issues.

2.2.1 Feature extraction

Every document d contains all the words, spaces, markups, and tags which occur in

it. Consider any news article or a random page from the web. Not all the words in the

document are useful and in vanilla text classification tasks only the text portions of the

page is taken into account. Other applications including search rely heavily on taking

the markup or link structure of documents into account but in text classification tasks

we usually only consider the text portions of the page; there are specialised applications

that account for other content.

Considering only text portions of a page involves ignoring all markup, tags, and

whitespaces. Common stop-words (like a, an, the, for) which are not useful in distin-
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guishing one page from another are also ignored. The standard stop-word list used

is the SMART list 3. Stop-words are domain specific and the SMART list contains

stop-words for the general English language.

Following stop-word removal, all text tokens on the page are taken as individual

features to be considered for classification. Every word in the write-up of the page now

becomes a feature. Another common operation in extracting features is the operation

of stemming where words like ‘achieve’, ‘achiever’, ‘achieved’, are all contracted to

their stemmed form of ‘achiev’. The Porter stemmer [Por80] is available in many

forms freely.

The above approach of converting pages to a set of features is called the bag

of words (BOW) model where words like ‘New’ and ‘Delhi’ will occur as separate

features instead of the intuitive single feature ‘New Delhi’. A lot of natural language

processing (NLP) research is devoted to detecting such phrases or named-entities

(NEs) in text documents. This is a first step in moving from the BOW model to more

intelligent models for feature selection in documents. Part-of-speech (POS) tagging

is also employed to generate POS n-grams as other kinds of features. All these NLP

derived feature sets have been used in text classification but surprisingly none have

been found to significantly improve over the simple BOW model.

2.2.2 Feature selection

It is seen that in-spite of stop-word removal and stemming, not all features ex-

tracted are useful in classification tasks. In fact a lot of unnecessary features harms

the learnability of models. Hence feature selection is a standard technique used to

reduce the number of features. Feature selection typically employs some statistical

measures over the training corpus and ranks features in order of the amount of in-

3ftp://ftp.cs.cornell.edu/pub/smart/



Chapter 2. Background on text classification 24

formation (correlation) they have with respect to the class labels of the classification

task at hand.

The typical measures used to rank feature lists are mutual information with the

class label, information gain, and other such measures. After the feature set has

been ranked, the top few features are retained (typically order of hundreds or a few

thousand) and the others are discarded. Typical large text corpora contain tens to

hundreds of thousands of unique features.

Such feature selection is not needed for all classification algorithms as some classifiers

are capable of feature selection themselves. However for some other classifiers feature

selection is mandatory and a large number of bad features harms the classifier accuracy

significantly.

2.2.3 Representation

Once features are extracted from documents, each document is converted into a

document vector. Documents are represented in a vector space; each dimension of this

space represents a single feature and the importance of that feature in that documents

gives the exact distance from the origin. Documents are thus points (vectors) in a

|V | = v dimensional vector space where V denotes the vocabulary of all features.

Representation of features is very important as it forms the basis for most classification

algorithms. Algorithms work on these document vectors and the classification task

hopes to distinguish documents of one class from the other, so there must be signifi-

cant differences in the vectors of different documents. The simplest representation of

document vectors uses the binary event model, where if a feature j ∈ V appears in

document d, then the jth component dj is 1 otherwise it is 0. This can be replaced

by term frequency (TF) where dj is the count of the number of times j occurs in the

document. Since a TF representation can reorient the document vector unfairly in
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directions of features with lots of occurrences, the TF representation is modified by

the ‘importance’ or rarity with which the feature j occurs in all documents of the

corpus. If DF (j) is the document frequency of j occurring in all documents D, then

for the jth feature, the dth
j component of d is dj = TF (j) ∗ log |D|

DF (j)
(many variants

exist). This is known as the TFIDF representation of documents.

The final issue in representing document in vector space is accounting for different

sizes of documents. There has been extensive work in normalising document vectors for

fair representations across the corpus [LK02]. These normalisation approaches yield

minor differences in performance with respect to each other, and the results are very

dataset dependent. The most commonly used length normalisation is the Euclidean

length normalisation where are document vectors are normalised to unit norm by

the L2 distance metric. Comparative studies have been done with binary, TF, and

TFIDF representation along with no, L1, and L2 unit normalisation. Normalising

vectors seems to most significantly affect text classification performance especially

with discriminative classifiers.

2.3 Classifiers

In this section we review some of the algorithms commonly used for text classification.

Once document vectors of the entire corpus are ready as per pre-processing steps de-

scribed in the previous section, a variety of learning algorithms can be applied. The

two broad types of classification methods are generative and discriminative methods.

Generative models: Generative methods include naive Bayes (NB), Latent Dirich-

let Allocation (LDA), the Aspect model, and BayesANIL. All generative methods

model some kind of probability of generating the corpus i.e. Pr(d|c) or the probabil-

ity of generating a document given a class.
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Discriminative methods: This is very different from discriminative methods typ-

ified by support vector machines (SVMs), logistic regression (LR), decision trees, en-

sembles of decision trees (like ADABoost). Discriminative methods directly try to

learn models for predicting Pr(c|d) or finding the class most appropriate for the doc-

ument at hand.

Generative models are moderately accurate but very efficient and their power comes

in providing very good document generation models which find wide spread applica-

tion. Discriminative methods are accepted to be the most accurate but require in-

efficient training methods to be invoked. Other kinds of classifiers like highly tuned

rule-based systems are very effectively used in the industry where maintainability and

interpretability of the rules is of prime concern. Such rule bases have been developed

over long period of careful tuning but all this knowledge is not publicly available.

We review NB classifiers in Section 2.3.1 and SVMs in Section 2.3.2 as common

representative classifiers. A lot of our work uses these two classifiers and they also

find common application in the literature.

2.3.1 Naive Bayes (NB)

In NB classification for a single label set C,

Pr(c|d) =
Pr(c, d)

Pr(d)
=

Pr(c) Pr(d|c)
Pr(d)

(2.1)

∝ Pr(c) Pr(d|c) ∝ πc

∏
t∈d θ

n(d,t)
c,t ,

where c ∈ C is the label, d is the test document, t occurs n(d, t) times in d, πc is the

fraction of documents tagged c (also called the prior probability of c), and θc,t are

multinomial probability parameters [MN98a], estimated from training documents as

θc,t =
λ+
P

d∈Dc
n(d,t)

P
τ∈T (λ+

P
d∈Dc

n(d,τ))
, (2.2)
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where T is the vocabulary or feature set, Dc is the set of training documents marked

with label c, and 0 < λ ≤ 1 is the Lidstone’s smoothing parameter [Ris95] (λ = 1

corresponds to the well-known Laplace’s smoothing). Having estimated model param-

eters from training data, the goal is to find the best class arg maxc Pr(c) Pr(d|c) for

test documents.

The open source toolkit called Rainbow [McC98] is very widely used for its im-

plementation of NB and a few other classifiers. Rainbow is a very good bag-of-words

processing toolkit that has many options for document parsing, vector creation, fea-

ture selection, representation choices, summary statistics, and many implementations

of different classifiers. We use Rainbow extensively for document pre-processing and

feature selection.

2.3.2 Support Vector Machines (SVMs)

Suppose we are given a vector representation of D documents. Each vector used

TFIDF representation of features normalised to unit L2 norm. Each document vector

is associated with one of two labels, +1 or −1. The training data is thus {(di, ci), i =

1, . . . , n}, c ∈ {−1, +1}.

A linear SVM finds a vector w and a scalar constant b such that for all i, ci(w ·

di + b) ≥ 1, and ‖w‖ is minimized. This optimization corresponds to fitting the

thickest possible slab between the positive (c = +1) and negative (c = −1) documents.

In case the training samples are not linearly separable, it is possible to trade off

the slab width for the number of misclassified training instances. A more complete

and theoretical introduction to SVMs can be found in Burghes’ tutorial [Bur98] and

Vapnik’s book [Vap95].

If the data has more than two labels, it is common to create an ensemble of yes/no

SVMs, one for each label. During training, a document marked c is a positive example
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for the SVM associated with c, and a negative example for all other SVMs. This is

called the “one-vs-others” ensemble approach. During testing, for a test document d,

each SVM evaluates its regression function; the SVM corresponding to label c evaluates

wc · d + bc. The label chosen is arg maxc(wc · d + bc) (other policies can also be used).

Other policies can be used instead of one-vs-others. One-vs-one for example trains

all possible pairs [Kre99] of classes against each other resulting in
(

n
2

)
binary SVMs.

The winning class is chosen by majority voting. Error correcting output codes [DB95]

and DAGSVM [PCST00] are other methods for decomposing a multi-class problem

into many 2-class problems. Detailed studies have found these approaches to be very

similar in performance [HL01], hence one-vs-others is usually used widely because of

ease of implementation and clear semantics. We also use one-vs-others in all our work

unless otherwise stated. Such decomposition is also needed for other discriminative

techniques like logistic regression.

Inducing a SVM classifier involves a complex, iterative numerical optimization.

Several implementations of SVM are publicly available, including Sequential Minimum

Optimization (SMO) [Pla98, DPHS98], SVMlight [Joa], and LibSVM [CL]. We have

used both in our work.

This issue of decomposing multi-class classification problems into multiple binary

ones are common to most discriminative methods which are 2-class classifiers by def-

inition. Regularised least squares and logistic regression [ZY03] are other commonly

used discriminative classifiers which perform comparably in accuracy to SVMs.

2.4 Evaluation

In this section we review standard evaluation procedures used in text classification

research and industry systems. We look at the standard evaluation methodology,
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followed by a look at various measures in Section 2.4.1, and conclude by describing

commonly used benchmark datasets in Section 2.4.2.

The common metric of interest in evaluating text classification systems is how

accurate the system is i.e. what fraction of documents belonging to known classes

are correctly assigned those classes. The standard way of doing this is to take a

labeled portion of the corpus as the training data, and use the remaining fraction of

labeled data as test data. The system is trained on this training data and evaluation

performance is measured on the test data - the known labels of test data are hidden

and compared against label predictions from the system. A typical train-test split of

a labeled corpus is in the ratio 70 : 30.

Sometimes a part of labeled data is also held aside for tuning purposes. The system

is trained on training data, tuned on this held aside data called validation data, and

tested against the test data. A typical ratio for training, validation, and test data is

60 : 20 : 20.

Experiments are often repeated with different random splits into train, validation,

and test datasets. Usually the corpus is randomly split and evaluated from 5 to 30

times and the mean and variance of the accuracies is reported. Techniques like cross-

validation and k-fold validation help guard against randomness in particular data

splits and make the results more sound. k-fold validation involves splitting the data

in k parts, using (k− 1) parts for training and the remaining part for testing. This is

repeated k times for each part as the test set one at a time. Average results of k runs

are reported. Refer to Haykins [Hay00] for details on cross-validation.

When comparing two algorithms, experiments are performed multiple times and

statistical tests like the paired t-test are used to qualitatively judge whether one algo-

rithm is better than the other.
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2.4.1 Measures

There are many measures used to evaluate various aspects of text processing and

information retrieval systems. See Rijsbergen’s classic book [Rij79] for details of

many of these measures. We introduce the most commonly used measures in the

text classification context below.

For a binary classification problem, there is a positive class and a negative class. A

2-by-2 confusion matrix shown in Figure 2.1 gives the number of documents predicted

correctly and incorrectly into the two classes.

Predicted → +ve -ve

True ↓

+ve a b

-ve c d

Figure 2.1: 2-by-2 confusion matrix

In this confusion matrix, (a + b) are the number of documents which truly belong

to the positive class of which a were correctly predicted to be positive (true positives)

and b were predicted negative (false negatives). (c + d) documents belong to the

negative class of which c were incorrectly predicted positive (false positive) and d were

correctly predicted negative (true negative). Based on this:

Accuracy = (a + d)/(a + b + c + d) (2.3)

Precision = a/(a + b) (2.4)

Recall = a/(a + c) (2.5)

F1 =
2 ∗ precision ∗ recall

precision + recall
(2.6)

(2.7)
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In multi-class classification problems, results need to be averaged over confusion

matrices of all n classes in the label-set. The two methods of averaging are common

to all the above measures. Micro-averaged precision (similarly recall and F1) is the

average of all precision values weighted by the number of positive instances in each class

(a + b). This measure is heavily influenced by the performance of highly populated

classes in the case of skewed instance distribution in a multi-class setting. Macro-

average precision (similarly recall and F1) is the simple average of all precision values

without weighting. This measures ignores the skew in the instance distribution and

treats all classes equally. Both types of averaging have their own uses for maximisation

depending on the application.

In multi-labeled classification problems, these evaluation measures have a slightly

different interpretation and we review these in the relevant chapter in Section 5.4.

2.4.2 Benchmark datasets

Standard benchmark datasets are used in all text classification research for eval-

uation. In this section we review some of the common benchmark datasets we have

used in our work and describe their specific characteristics. Any specific processing

done on the datasets is described at the start of the relevant experimental sections.

Amongst standard pre-processing steps we apply stop-word removal from the SMART

list, apply word stemming using the Porter stemmer [Por80], and select features with

high mutual information (or other statistical measures like information gain).

Reuters-21578

The Reuters-21578 Text Categorization Test collection4 is the most popularly used

benchmark dataset. It contains 135 classes distributed in a set of SGML files. The

4http://www.daviddlewis.com/resources/testcollections/reuters21578/
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dataset is a multi-class multi-labeled dataset and the standard Mod-Apte train-test

split is popularly used in the literature. All SGML tags are ignored and only the

title and body of the message is taken into account. Various researchers have used

many standard subsets of this dataset. In particular people have used only the most

populous 10 classes or classes with at least a minimum specified number of training

documents.

20 Newsgroups

The 20-newsgroups (20NG) dataset5 is a collection of 18, 828 news wire articles

from 20 Usenet groups. The older version of the dataset had nearly 1, 000 articles in

each group, but the newer version we use has duplicate posts removed and has most

post headers removed. This dataset is not pre-processed into training and testing

sets. We randomly chose 70% of the documents for training and the remaining 30%

for testing. This is repeated 10 times and average numbers are reported. The corpus

contained around 75, 000 words. All HTML tags are skipped and all header fields

except subject and organization of the posted article are ignored.

Patents (WIPO)

The Patents dataset is the wipo–alpha collection of an English language collection of

patent applications. These are classified into a hierarchy of classes with subclasses and

groups. We take all 114 sub-classes of the top level (A to H) using the given train/test

split. This is a multi-labeled dataset. Only the text in the title and abstract of each

patent application is used for classification purposes.

5http://www.ai.mit.edu/~jrennie/20_newsgroups/
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RCV1

The RCV1 [LYRL04] dataset6 is a collection of one year of Reuters news stories

from August ′96 to August ′97. There are more than 800, 000 stories and the suggested

train-test split for this dataset is to use the first 12 days stories for training and the

remaining for testing. However different applications and researchers have customised

this split as appropriate for the problem at hand.

The news stories are organized into three unrelated label-sets or taxonomies: re-

gions, topics, and industries. The topics and industries label-sets are hierarchical while

regions is flat. Stories in this dataset are assigned labels from all three label-sets and

multi-labeling within a label-set is common. These stories are distributed as a set of

XML files and only the main title and main body of the news story is considered for

classification.

Webcrawls

For some of our work with web related applications we required real-life data

crawled from the web. Web data has different characteristics from controlled bench-

mark datasets; they are more noisy, hyper-links can be spammy, and a lot of junk pages

like browser-dependent ones get crawled. We describe 5 such datasets we crawled from

the Yahoo! and Dmoz directories.

Our examples were collected from the Dmoz and Yahoo! directories. Their inter-

section had 110926 documents, less than 10% of either’s total size. Like A&S [AS01]

we selected five data sets: Autos, Movies, Outdoors, Photo, and Software. However,

their sub-topics and training examples were not available to us. Therefore, for each

data set, in each of the two taxonomies, we picked immediate children as labels such

that there were at least 10 URLs in common with a label of the other taxonomy. We

6http://trec.nist.gov/data/reuters/reuters.html
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then added in a few additional labels from each taxonomy. Finally we went back to

the original Dmoz and Yahoo! sources to collect all URLs within the chosen label sets;

some 70–80% of the fetches succeeded.

Table 2.1: Sizes of various document and label sets in our collected data

Data set |DA −DB| |A| |DB −DA| |B| |DA ∩DB|

Autos 3589 31 3138 24 184

Movies 8003 33 11420 27 1222

Outdoors 8739 26 1540 39 181

Photo 2895 8 438 22 95

Software 9851 51 2383 25 264

Table 2.1 shows various properties of our crawled data sets. We felt uncomfortable

about the small test sets, but related work reported intersections of similar small sizes.

Given the size of the web such small intersection sizes can in fact be expected from

manually created directories. Further, we also found human labeling (based on page

text alone) to systematically reject pages with relatively unreliable text.



Chapter 3

Learning mappings between classes

3.1 Introduction

In this chapter we introduce the first inter-class relationship we propose in this

thesis. We look at discovering and exploiting mappings between sets of classes or

label-sets. Mappings between label-sets have interesting application in the web and

e-commerce domains. We propose to use mappings to enhance accuracy of existing

classifiers. We also show how mappings can be useful for data integration and taxon-

omy maintenance.

An important step in information interchange and integration of software systems

is to be able to identify various kinds of mappings between domain specific ontologies,

taxonomies, and label-sets. This is an important step toward realising the vision of

the semantic web. The Web has evolved without central editorship and it is unclear if

universal standards will emerge outside specific application segments. Even for those

segments, there is a need to consolidate legacy data into content organized as per

agreed-upon standards; standards that are far from static.

Since content creators have no notion of a universal catalog of labels, news sites,

content management sites, blogs, all have different, but sometimes related sets of labels

to annotate content. Topic directories have evolved different taxonomies of labels while

35
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vendor and distributor catalogs in e-commerce are dynamic and evolving.

A few examples will illustrate the current scenario. Consider the Yahoo! and

Dmoz directories. Both cover the Web and have evolved to similar taxonomies, but

show non-trivial differences. Among other artifacts, taxonomy inversion is rampant

in the Regional categories; what one calls Reference.Education.Colleges_and_

Universities.Asia.India, the other might call Regional.Asia.India.Education;

in fact, they sometimes coexist in the same taxonomy! Other relationships are also

common: Dmoz.Recreation.Outdoors.Speleology overlaps Yahoo.Recreation.Outdoors.

Caving, but there are important non-overlapping sub-topics.

As another example, an e-commerce site which consolidates catalogs of goods and

services may want to organize them according to the (still evolving) codes being de-

veloped in cooperation between ECCMA and UNSPSC (see http://www.eccma.org/

unspsc/). Meanwhile, vendors may have their own custom/legacy codes which gen-

erally evolve over time.

Documents are inherently conglomerations of subjective, ill-specified concepts.

Any kind of mappings between content-based taxonomies will be complex, uncertain

and noisy. Text searching, ranking, and mining tools must exploit any available rela-

tionships, even probabilistic ones, between diverse taxonomies and tag sets. One use

of such mappings is to explore if better classifiers can be constructed for a taxonomy

B, if label assignments of documents in another related taxonomy A are known or can

be inferred.

Outline: In this chapter, we introduce a general semi-supervised learning frame-

work called cross-training which can exploit knowledge of such label assignments. In

the rest of this chapter, classes cA form label-set A which is attached to documents

DA (similarly cB and DB for B). Section 3.2 introduces the generative cross-training
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framework that builds upon NB classifiers and the Expectation Maximisation (EM) al-

gorithm. Section 3.3 introduces cross-training in a discriminative setting using SVMs.

Section 3.4 shows detailed experiments where cross-training matches or outperforms

baseline accuracy on several real world learning tasks and shows us how to learn rela-

tionships between taxonomies. We discuss related work in Section 3.5, look at some

interesting aspects of cross-training in Section 3.6, and summarise in Section 3.7.

3.2 Generative cross-training

Generative classifiers try to model the process by which a corpus of training doc-

uments is generated. They use this model to predict labels for test documents. A

naive Bayes (NB) classifier posits that a document is generated by first fixing a label

from a label-set by invoking a (typically multinomial) prior distribution on labels, and

then creating the document by invoking a term (feature) distribution conditioned on

the label just chosen. Our aim in generative cross-training is to learn a model that

examines the generation process of documents from two label-sets simultaneously. We

want to explore probabilistic mappings between topics in two label-sets and to this

end we want to see if label assignments of documents in one taxonomy help us learn

a better generative model for a second taxonomy.

In Section 3.2.1 we look at a method based on Expectation Maximisation (EM) for

one label-set called EM1D. EM1D is a simple semi-supervised approach for learning

a generative classification model from a small amount of training data and a large

pool of unlabeled data. In Section 3.2.2 we extend this EM formulation based on one

label-set to learn label-pair assignments to documents, one label from each label-set.

This is our main algorithm for learning label-pairs and is called EM2D for our 2-d EM

formulation. Between EM1D and EM2D, we propose a stratified version of EM1D in
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Section 3.2.3 that uses A-labels in simpler ways than EM2D by setting up an EM1D

instance for each α ∈ A.

3.2.1 Expectation maximization (EM1D)

The NB classifier needs each training document to be marked with one label. Can

we make use of additional documents with no label information (such as the test

documents themselves or a pool of unlabeled documents) or partial label information

(e.g., that a document was generated from one among a restricted subset of labels)?

A classic approach to estimating distributions over missing values is Expectation

Maximization (EM) [DLR77]. Nigam et al. [NMTM00] use EM to induce a document

classifier starting from a few labeled and many unlabeled documents (Figure 3.1).

Because this algorithm is designed for only one label set, we will call it EM1D.

1: Input: Training and unlabeled set of documents
2: Output: EM model parameters using semi-supervised learning
3: Use labeled documents to induce a naive Bayes classifier with parameters Θ
4: while model Θ has not stabilized to satisfaction do
5: set up new model parameters Θ′

6: collect contributions from labeled documents to Θ′

7: for each unlabeled document d do
8: E-step: calculate the class probabilities Pr(c|d,Θ) based on current parameters
9: M-step: if term t occurs n(d, t) times in d, let d “contribute” a fractional term

count of Pr(c|d) n(d, t) to the next estimate θ′
c,t

10: end for
11: Re-estimate new cluster model parameters Θ′

12: Θ← Θ′

13: end while

Figure 3.1: Using standard EM (“EM1D”) for semi-supervised learning of document

labels.



Chapter 3. Learning mappings between classes 39

3.2.2 EM2D: Cross-trained naive-Bayes

EM1D is a simple classic semi-supervised formulation of EM in a classifier learning

setting. EM1D does not have any notion of two label-sets. Our main motivation

behind cross-training is to see whether we can learn better models for two taxonomies

if they share some mappings and similarities between their respective topics.

We extend Nigam et al.’s EM algorithm to EM2D by creating a 2d grid of class

labels taken from the product set C = A × B. We assume a standard mixture

model [DLR77] for document generation. First the label pair (cA, cB) is picked with

probability Pr(cA, cB), and then a conditional term distribution Pr(d|cA, cB) is sampled

to generate the document. Thus,

Pr(d) = Pr(cA, cB) Pr(d|cA, cB). (3.1)
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Figure 3.2: Design and evaluation of EM2D.

We assume the term distribution to be multinomial, extending parameters θc,t to
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θcA,cB ,t. Likewise, parameters πcA,cB
express the prior probability of a document being

generated from label-pair (cA, cB).

Thus, each document belongs to exactly one cell of this grid 1. However, in the

mapping scenario in Section 3.2, each training document comes with exactly one label,

which determines either the row or the column where the training document belongs,

but not both. Thus, each document d identifies a subset Cd ⊂ C to which it potentially

belongs, and for γ 6∈ Cd, we are given that Pr(γ|d) = 0. We force this constraint in

the E-step shown in Figure 3.1, limiting the contributions from a training document

to its correct row or column, and scaling the E-variables to add up to 1 over the row

or column.

Initialization

The EM algorithm [DLR77] guarantees only a locally optimum solution to the

E and M variables. It is important to start the iterations from a reasonably good

initial estimate of Θ. In EM2D, we have two resources at our disposal to achieve good

initialization.

The first option is to train two naive Bayes classifiers to generate guessed labels.

DA−DB is the set of training documents for A which have A-labels but are not labeled

with B-labels. Similarly, DB −DA is the training corpus for B. Both these document

sets and their corresponding label-sets are used in inducing two naive Bayes classifiers.

These classifiers are used to guess B-labels for DA−DB and guess A-labels for DB−DA.

These basic naive Bayes classifiers are trained on a 70−30 train-validation split. They

help us choose an initial number of features in decreasing order of information gain

and an initial value of the Lidstone parameter λ in Equation (2.2). These initial steps

are shown near the top of Figure 3.2.

1It is possible that a document belongs to more than one class in a single taxonomy; handling
such cases is left to future work.
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The second option is to use the tune-set of fully-labeled documents to seed the

initial Θ distribution. Fully labeled documents are our test documents which have

A-labels as well as B-labels. These are denoted DA ∩DB. However, this intersection

set is generally rather small. Using only the tune-set would generally fail to populate

all the cells of the label grid adequately. It is probably best to use both options in the

rare case that fully-labeled data is available.

Update rules

Suppose a training document d has α = cA(d) known but cB(d) unknown. Then∑
cB

Pr(α, cB|d, Θ) = 1. Using the standard multinomial model in Equation (2.1), we

can write

Pr(α, β|d, Θ) =
πα,β

Q
t∈d θ

n(d,t)
α,β,t

P
β πα,β

Q
t∈d θ

n(d,t)
α,β,t

. (3.2)

This completes the specification of the E-step, although some care is required to

preserve numerical precision. For the M-step, we set

π′
α,β =

1

|D|

[ ∑
d:cA(d)=α Pr(α, β|d, Θ)

+
∑

d:cB(d)=β Pr(α, β|d, Θ)

]
, (3.3)

which is simply the expected fraction of documents occupying label cell (α, β). Like-

wise, we set

θ′
α,β,t =

[
λ +

∑
d:cA(d)=α n(d, t) Pr(α, β|d, Θ)

+
∑

d:cB(d)=β n(d, t) Pr(α, β|d, Θ)

]
∑

τ

[
λ +

∑
d:cA(d)=α n(d, τ) Pr(α, β|d, Θ)

+
∑

d:cB(d)=β n(d, τ) Pr(α, β|d, Θ)

] (3.4)

This expression closely resembles Equation (2.2), except that again, contributions to

term counts are weighted by the probability of each document occupying label cell

(α, β), like in step 7 of Figure 3.1.
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Damping: In the EM2D setup, different documents have different quality and extent

of label information. Tune-set documents plug into exactly one known (α, β) slot and

presumably have the most reliable label information. Training documents have one

label pinned by human input, which is assumed to be reliable, but the other label is

not as reliable. In the zero-label setting, test documents have neither label known,

but may still help the classifier gain accuracy by participating in the EM iterations

“completely floating” over the label grid.

In the update equations above, we have given one vote to each document. However,

it is common [NMTM00] to use a damping factor L ≤ 1 to scale down the contribution

of documents whose labels we consider less reliable. It is as though a fully-labeled

document is worth one vote, but a singly labeled document is worth only L = 0.5,

say. Thus, L can be thought of as an instance scaling mechanism like in boosting. It

does not invalidate the theory of EM in any way. The best value of L can be set by

cross-validation.

Early stopping: The NB generative model is a very crude approximation to real-

ity. Therefore, maximizing data likelihood using EM may not improve classification

accuracy in all cases. It is common to use a tune-set to stop EM iterations in case

classification accuracy over (cross-) validation data is found to drop [NMTM00].

Deployment: The half-label setting is simple. Given a test document d with cA = α

known, we simply find Pr(α, β|d) for all candidates β ∈ B, and report the best. The

zero-label setting gives us at least two distinct options: EM2D with guesses and EM2D

with model aggregation.

EM2D with guesses (EM2D-G): To classify to target taxonomy B, we first

apply an A-classifier to the test document. The guessed A-label now lets us deal with
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the zero-label test instance as if it were a mapping problem. Obviously, we should use

the best possible A-classifier.

EM2D model aggregation (EM2D-D): After EM2D iterations are over, we

use the final values of the E-variables to prepare a new classifier for target taxon-

omy B. More specifically, each training document d ∈ DA − DB has associated

E-values Pr(β|d, α). Just like in EM, we let d “contribute” its term counts in pro-

portion to this probability to label β. Documents in DB contribute fully to their

respective labels in B. The resulting “aggregated” classifier for B is used to classify

test instances.

3.2.3 Stratified EM1D

If EM2D improves upon the accuracy of single-taxonomy learners, that could be

attributed to multiple reasons. Let B be the target taxonomy in this discussion.

The mapping of A-labeled documents to B may improve simply because of the extra

documents in DA −DB, not because these documents are A-labeled. Whether this is

the case can be easily determined by calibrating EM2D against EM1D (run with B

as target labels) with the documents in DA −DB thrown in as unlabeled documents.

Between EM1D and EM2D there are options which let us use the A-labels, but

in ways simpler than EM2D. We set up an EM1D instance for each α ∈ A. The B-

labeled documents are shared across all such EM1D instances. A-labeled documents

bearing the label α become unlabeled documents for the instance corresponding to α.

The pseudo-code is shown in Figure 3.3. We call this Stratified-EM and this is very

different from EM1D where there is just one label-set and one pool of unlabeled test

documents.

If EM2D beats both EM1D and Stratified-EM, we can conclude that the mutual

“corrections” of term distributions in EM2D are somehow vital to its higher accuracy.
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1: Input: Training and unlabeled set of documents

2: Output: Per-class EM model parameters using unlabeled data

3: for each label α ∈ A do

4: train a B classifier Θα using EM1D with DB − DA as the labeled set and

{d ∈ DA −DB|cA(d) = α} as the unlabeled set.

5: end for

6: for each test document labeled (cA, ?) do

7: use the EM1D model ΘcA to predict cB

8: end for

Figure 3.3: Stratified EM to exploit A-labels while classifying for B.

3.3 Discriminative cross-training

The classifiers discussed thus far aim to fit a class-conditional generative distribu-

tion Pr(d|c) (or Pr(d|cA, cB)), and use Bayes rule to estimate Pr(c|d) (or Pr(cA|d, cB)

etc.). In contrast, discriminative classifiers seek to directly fit a regression function

from the document to scores for label(s).

In this section we will discuss cross-training using two discriminative classifiers.

The first new approach uses Support Vector Machines (SVMs), which have been re-

ported to do well for text data [DPHS98]. This approach called SVM cross-training

(denoted SVM-CT) is described in Section 3.3.1. The second existing approach [AS01]

combines generative and discriminative aspects and is reviewed in Section 3.3.2.

3.3.1 SVM-CT: SVM-based cross-training

If A-labels are good predictors of B-labels, one way to enhance a purely text-based

SVM learner for B is to allocate, over and above a column for each token in the training

vocabulary, |A| extra columns, one for each label in A. A document d ∈ DB −DA is

submitted to a text-based SVM ensemble for A, called S(A, 0), which gives it a score

wcA
· d + bcA

for each class cA ∈ A.
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These scores can be inserted into the |A| new columns, either as-is, or after some

simple transformation, such as taking the sign of the score, or converting the largest

score to +1 and the rest to 0 or −1 (we use the latter option in our experiments), and

scaling ordinary term attributes by a factor of f(0 ≤ f ≤ 1) and scaling these label

attributes by a factor of 1− f . Document vectors are always scaled to unit L2 norm.

The parameter f , which can be chosen through cross-validation on a tune-set,

decides the relative importance of label and term attributes in the SVM kernel eval-

uations. We evaluated f from 0 to 1 in steps of 0.05 and set f = 0.95. These

cross-trained SVMs are denoted by SVM-CT.

S(A,0)

S(B,1)

DA–DB

Train

DB–DA
Test

�
t � �

cA � cB

�
t � �

cB � cA

S(A,2)

DA∩DB

E
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at
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Figure 3.4: Data flow diagram for cross-training SVMs.

Documents in DB−DA thus get a new vector representation with |T |+|A| columns

where |T | is the number of term features. They also have a supervised B label. These

are now used to train a new SVM ensemble S(B, 1). The document tables and how

they are used to train and test SVMs are shown in Figure 3.4. We can obviously

repeat the process iteratively in a ping-pong manner, each classifier providing synthetic

columns for the other. The complete pseudo-code is shown in Figure 3.5.

Our experiments show that SVM-CT does outperform SVM, making effective use
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1: Input: Training data sets for label-sets A and B

2: Output: Iteratively cross-trained SVM models for A and B

3: Represent each document as a vector d in term space and ‖d‖ = 1
4: Build one-vs-rest SVM classifiers S(A, 0) and S(B, 0) for DA −DB and DB −DA

using text tokens only
5: for i = 1, 2, . . . do
6: for each document d ∈ DB −DA do
7: Apply S(A, i− 1) to d, getting a vector γA(d) of |A| scores (see text)
8: Concatenate vectors d and γA(d) into a single training vector with label cB(d),

with relative term-label weight determined by f and maintaining ‖d‖ = 1
9: Add this vector into the training set for a one-vs-rest SVM classifier S(B, i)

10: end for
11: Similarly, use S(B, i− 1) to get γB(d) and induce a new one-vs-rest SVM classifier

S(A, i) for all d ∈ DA −DB

12: end for

Figure 3.5: Cross-training SVMs.

of the label attributes (although there is little improvement beyond the first ping-pong

round). SVM-CT is also better than the generative cross-training methods in about

half the cases. SVM (which uses text alone), in turn, is much better than the baseline

NB classifier. Moreover, inspecting the components of w along the label dimensions

derived by SVM-CT gives us some interesting insights into various kinds of mappings

between the label sets A and B. We will return to these observations in Section 3.4.

3.3.2 The A&S mapping algorithm

Agrawal and Srikant (A&S) [AS01] proposed a hybrid generative/discriminative

classification algorithm by enhancing the prior estimation of NB in Equation (2.1). Let

the target label-set be C and the source label set be S (to be consistent with their nota-

tion). In the mapping setting, classifying document d entails finding arg maxc Pr(c|d, s),

where the source label s ∈ S is supplied and the target label c is sought.

Given d and s are fixed, arg maxc Pr(c|d, s) = arg maxc Pr(c|s)Pr(d|c, s), which
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A&S approximate as Pr(c|s)Pr(d|c), using the conditional independence assumption

shown underlined (which is theoretically debatable, but seems to work in practice).

All that remains is to propose parametric forms for Pr(c|s) and Pr(d|c). Pr(d|c) is

modeled exactly as in Equation (2.1), i.e., Pr(d|c) ∝
∏

t∈d θ
n(d,t)
c,t . All θc,t are pre-

estimated by a C-trained classifier which has no knowledge of S-labels. (This is the

generative part.)

The key innovation of A&S is to propose a parametric form for Pr(c|s) depending

on inter-label relations. Let Nc be the number of C-labeled documents in the training

set for C. As in EM2D, A&S use a C-trained classifier to guess classes of S-labeled

documents; let G(s, c) be the number of documents with source label s that this

classifier assigns to target label c. The overall score uses a tuning parameter R ≥ 0

and is given by

Pr(c|d, s) ∝ Nc G(s, c)R
∏

t∈d θ
n(d,t)
c,t , or (3.5)

log Pr(c|d, s) = constant + log Nc + R log G(s, c) +∑
t∈d n(d, t) log θc,t.

Note that (once the θc,ts are fixed) R is the only tunable parameter here. R = 0

coincides with standard NB on the master labels. Taking logs, we see that (like SVM)

A&S is also a linear discriminant learner. A&S use a tune-set to set the best value of

R, which can be chosen in two ways.

Random sampling: A fraction (varying between 10% and 90% in our experiments)

of the fully-labeled documents is sampled to create a tuneset. The remaining docu-

ments are used as the test set. A range of choices for R ∈ {0, 1, 3, 10, 30, 100, . . .} is

evaluated against the tuneset. Average of the accuracy is reported over dozens of such

samples.
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Active learning: The system repeatedly samples the fully-labeled documents. For

each sample d, it varies R to see if R makes any difference to the estimated C-label.

If it does, d is placed in the tune-set; otherwise it is put in the test/calibration set.

A&S report that 5–10 actively chosen samples are adequate to pick a suitable R.

3.4 Experiments

In this section we present experiments performed in a variety of settings for test-

ing our cross-training algorithms. We used the 5 web-crawled datasets described in

Section 2.4.2 for the main experiments with EM2D and SVM-CT. All our algorithms

were coded in a few thousand lines of simple C++. A&S, EM2D, and variants were

run on 1.3GHz Pentium3 servers with 1–3GB of RAM. The models fit easily in tens of

megabytes of RAM. We scanned the documents sequentially and did not need to hold

document vectors in memory. The SVM implementation we used did load document

vectors into memory. A&S, EM2D and its variants generally trained faster than SVM

and SVM-CT.

In Section 3.4.1 we see the baseline naive Bayes accuracy for the 5 datasets used. All

further accuracy numbers are with respect to naive Bayes’s accuracy. In Section 3.4.2

we compare NB and SVMs with the cross-trained variation SVM-CT; we also see some

interesting mappings learned between classes across taxonomies. In Section 3.4.3 we

review the performance of EM2D against NB and the 1D EM variants presented in

Section 3.2. We see the sensitivity of the initial guesses in EM2D in Section 3.4.3

and look at performance in asymmetric scenarios in Section 3.4.3. We compare our

methods to A&S in Section 3.4.3 and present results with trying to classify zero-labeled

documents in Section 3.4.3.
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3.4.1 The naive Bayes baseline

We used naive Bayes (NB) classifier in the Rainbow package [McC98]. We created

two Rainbow classifiers, one for A labels using DA −DB, the other for B labels using

DB −DA.

Apart from providing a strawman, NB runs are used to set the Lidstone parameters

and the feature sets for A and B. Consider the classifier for A. We first created a

random 70%/30% train-test split of DA − DB. Rainbow ingested the 70% training

subset and listed features in decreasing order of information gain (w.r.t. the labels).

In an outer loop, we chose from λA between 0.1 and 1 in steps of 0.1. In an inner

loop, we chose a prefix VA of the feature list of size 10% through 90% in steps of

10% (similarly for B). We then used the 30% validation data to pick the best values

for λA, λB, VA, VB. Finally, the NB baseline is obtained by subjecting the held-out

DA ∩ DB to these optimized Rainbow classifiers. Table 3.1 shows various accuracy

statistics.

All other generative cross-training algorithms used these optimized values of λ and

V . In particular, EM2D used VA∪VB as the feature set, and the average of λA and λB.

Feature selection and the choice of λ matters a great deal for most data sets.

Given high-dimensional data like text, feature selection would likely be helpful for

any learning method, but the benefit from tuning λ is large mainly because the naive

Bayes model results in terrible estimates of the joint distribution, and any “fix” to the

innumerable θs is likely to help. Whereas the two classifiers can each optimize VA, VB,

λA and λB in an unconstrained manner, EM2D is stuck with a single feature set and

a single value of λ, which puts it at a disadvantage.
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Table 3.1: Naive Bayes baseline accuracy with optimized choices of |V |, the number

of features, and λ, the smoothing parameter. A is Dmoz and B is Yahoo!. Percent

accuracy is shown for 70/30 cross validation and the unseen DA ∩DB test set.

Data set |V | λ 70/30 DA ∩DB

Autos A 10000 0.1 39.3 46.5

B 10000 0.2 59.2 65.6

Movies A 8385 0.5 44.6 43.0

B 64434 0.2 50.9 41.0

Outdoors A 2142 0.2 79.8 77.1

B 813 0.5 68.0 78.0

Photo A 27969 0.5 68.7 40.9

B 325 1.0 49.6 35.5

Software A 40000 0.1 40.0 47.8

B 17000 0.1 58.4 54.3

3.4.2 Performance of SVM-CT

We used SVMlight [Joa99] in one-vs-rest ensemble mode, with a linear kernel

and default settings for all parameters. Documents were represented as unit vectors

and f was set to 0.95 as explained in Section 3.3.1.

Figure 3.6 compares the accuracy of SVM and SVM-CT with the NB baseline. In

most cases, SVM beats NB. This is consistent with folk wisdom that SVMs generally

perform better than NB on text classification tasks. More interesting is the observation

that SVM-CT has higher accuracy than SVM, which shows that it is possible for SVM-

CT to exploit additional information from label-derived columns.

We made two additional studies of SVM-CT. First, we checked that the average

magnitude of w for ordinary term features was always lower than the average mag-

nitude of w for label-derived features. Recall that |wt| is a measure of how strongly
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Figure 3.6: Comparative evaluation of NB, SVM and SVM-CT (cross-trained SVM).

the feature t can influence the decision of the SVM, i.e., the sensitivity of the SVM to

feature t.

Second, we tabulated the B (respectively, A) labels corresponding to the highest

and lowest w values of various A (respectively, B) classifiers. We wanted to observe

the mappings learned between the classes in the two taxonomies using cross-trained

SVMs 2. During cross-training, the label information was transformed into a vector

of 1 and −1 values as mentioned in Section 3.3.1. In addition, a new dimension called

none-of-the-above (NOTA) was introduced, whose value was set to 1 when all label

scores obtained from B (respectively, A) were negative and all label dimensions were

set to −1. The purpose of NOTA is explained shortly.

The results are shown in Table 3.2. We show some Dmoz (respectively, Yahoo!)

class labels along with the Yahoo! (respectively, Dmoz) class labels which had the

greatest positive and negative influence in predicting the said Dmoz (respectively,

Yahoo!) class. All positive couplings are very meaningful; some negative couplings

are fairly intriguing too.

The Outdoors dataset for both taxonomies contains the class ScubaDiving which

2See http://www.it.iitb.ac.in/~shantanu/ctdemo/ for examples
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Table 3.2: Dmoz and Yahoo topic mappings learned with cross-trained SVMs

Dataset Dmoz. Maps to Yahoo. Weight

Autos News&Magazines News&Media 0.147
Volkswagen −0.156

Movies Genres/Western Titles/Western 0.242
Titles/Horror −0.052

Outdoors Scuba Diving Scuba 5.878
Snowmobiling −0.647

Photo Techs&Styles Pinhole Ph’graphy 2.796
3D 0.964
Panoramic 0.921
Organizations −1.184

Software Accounting NOTA 0.156
Screen Savers 0.103
OS/Unix −0.171

Dataset Yahoo. Maps to Dmoz. Weight

Autos Corvette Chevrolet 0.981
Parts&Accessories −0.266

Movies SciFi&Fantasy Series/Star-Wars 1.123
Reviews −0.824

Outdoors Scuba Scuba Diving 4.822
Wildlife −0.437

Photo Pinhole Ph’graphy Techs&Styles 0.4842
Photographers −0.270

Software OS/MSWindows OS/MSWindows 0.018
NOTA −0.001
OS/Unix −0.008

maps to it’s namesake class in the other taxonomy with a large positive component

along w. Such one-to-one mappings are symmetric and expected. Even when there

is no direct one-to-one correspondence between the labels, or there is a containment

relationship, as between Yahoo.Movies.Genres.SciFi-Fantasy and Dmoz.Movies.

Series.StarWars, SVM-CT seems capable of extracting that information. On the

other hand when the Dmoz.Software.Accounting class really has no relevant class in

the Yahoo! taxonomy, the synthetic NOTA class indicates this with a high |wNOTA|.
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One interesting case is the mapping of Dmoz.Photo.Techniques&Styles. Yahoo.

Photo, on the other hand contains separate classes for each technique like Pinhole

Photography, 3D Photography, Panoramic Photography, etc. The Dmoz to Yahoo!

mapping in this case gives high positive weights to most of these child classes as seen

in the Figure. This parent-child, or one-to-many mapping emerges in-spite of our

assumption of flat taxonomies and is instructive.

Another interesting mapping is from Yahoo.Software.OS.MSWindows to multiple

high positive weights to classes in the Dmoz taxonomy. Here, the NOTA class can

be interpreted as clearly separating all the Windows related classes above it from the

Unix related classes below it within Dmoz.Software.

Many such mappings are further reported visually in the Appendix of this thesis.

For each of the 5 datasets, we have given part of the graph generated by keeping

classes in A and B as nodes and mapped weights between them as directed edges.

Only edges greater than 0.5 are retained and interesting parts of the graph are are

shown. The full graphs and an interactive demonstration can be viewed at http:

//www.it.iitb.ac.in/~shantanu/ctdemo/.

3.4.3 Performance of EM2D

EM2D for mapping

Figure 3.7 shows the accuracy of EM2D in comparison with NB. EM2D is sig-

nificantly better than NB with a maximum gap of 30% for the Movies dataset and

average gap of 10%. This is reassuring, but in this section we wish to analyze carefully

why this is the case.

There are two potential sources of information from DA−DB which may improve

the accuracy of classifying into B given d and cA. The first is simply the addition of a

bunch of documents, even if they are not labeled with B-labels and even if we ignore
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Figure 3.7: EM2D vis-a-vis Stratified-EM1D, EM1D, and NB. For EM1D we used its

best damping parameter, L = 0.01.

their A-labels. If this were the only source of extra information, EM1D should be able

to match EM2D, which is clearly not the case. Therefore, knowledge of A-labels of

specific documents is vital.

As we discussed in Section 3.2.3, A-labels can be used by Stratified-EM, which

simply creates one instance of EM1D for each distinct label α ∈ A. Figure 3.7 also

shows that with only two minor exceptions, EM2D beats both EM1D and Stratified-

EM. This despite the fact that each EM1D has denser data, lowering the variance of

the parameter estimates compared to EM2D. These measurements help us establish

that

• There is information available in cross-training which EM1D cannot exploit, and

• A relatively straight-forward extension to EM1D, Stratified-EM, does not work

as well as EM2D.

Sensitivity to initial guesses of labels

EM2D, like EM1D, finds locally optimum values of the total data likelihood. Hence

the final accuracy is sensitive to the initial assignment of half-labeled data in the 2D

label grid.
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Given the baseline classifiers trained on A (using documents in DA −DB) and B

(using documents in DB −DA), it is natural to initialize EM2D by submitting docu-

ments in DA−DB to the B-classifier and vice versa. We may use a “hard” assignment

to the best guess, or a “soft” or fractional assignment based on the probabilities emit-

ted by the baseline classifiers.

However, these are not the only options. How will EM2D behave if each document

in DA −DB is assigned uniformly over each label in B? In general, how sensitive is

EM2D to perturbations and errors in the initial E-estimates?

To test EM2D’s resilience, we randomly picked a fraction q of documents (with A-

labels, say) and replaced their guessed scores for B-labels with a uniform distribution

smeared over all B-labels. The remaining fraction 1 − q of documents are added to

the EM2D system as before. Thus, q = 1 corresponds to full uniform assignment.

Obviously, the effect of smearing a fraction q depends on the accuracy of the guesses

in the first place. Therefore we repeat the smearing experiments for varying level of

starting guess accuracy. (We fake different guess accuracies by random flips in guesses.

Note that these “flips” are distinct from the “smear.”)

In Figure 3.8 we show the change in accuracy with increasing fraction of smeared

guesses on the Movie dataset, with two different settings of guess accuracy: the default

as shown in Table 3.1 and a second setting where 70% of the guesses have been pre-

flipped to a random label (this results in guesses of very poor quality). These plots

show that

• When the guesses are reasonably accurate, uniform assignment is worse than

assignment based on guessed probabilities, which makes eminent sense.

• EM2D can handle limited (q = 0.15 to q = 0.20 for this data) smearing, beyond

which accuracy starts to drop.

• When the accuracy of guesses is too poor, smearing a fraction of the guesses



Chapter 3. Learning mappings between classes 56

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1
Fraction of perturbed guesses

A
cc

ur
ac

y 
%

Movies A
Movies B
Photo A
Photo B

Figure 3.8: The effect on EM2D of smearing the initial guesses of a fraction of half-

labeled training documents. The y-axis shows final EM2D accuracy.

(q = 0.10 in this case) can improve accuracy. This was somewhat unexpected,

and made sense only in hindsight.

Highly asymmetric scenarios

All the data sets we collected have relatively balanced sizes of DA − DB and

DB −DA. How well can EM2D do in highly unbalanced settings, especially w.r.t. the

sparsely-populated taxonomy?

To answer this question, we (arbitrarily) picked B as the taxonomy to be deci-

mated, and sampled DB − DA down to 300 documents. (Actually, we decimated to

200, 300, and 5% of the original. Results were similar.) DA−DB was left unchanged.

The small size of DB−DA led to a poor baseline B-classifier. Therefore, the guessed

B-labels for the documents in DA −DB had a large error rate. Because information

flow is bidirectional in EM2D, poor B guesses reduced overall accuracy. We propose

three fixes for this problem:
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• Taking our cue from Figure 3.8, we smear documents in DA − DB over all B-

labels. Documents in DB −DA continue to use the A guesses.

• Like A&S, we use a tune-set sampled from DA ∩ DB. Specifically, we sampled

5% of fully-labeled documents.

• We set the damping factor L (Section 3.2.2) so as to restore the relative weights

of DA − DB and DB − DA to the same ratio as in the original dataset. This

would mean L ≈ 0.05 on documents in DA −DB.

Figure 3.9: EM2D on a small sample of 300 documents from DB −DA.

Figure 3.9 shows that the accuracy gain of EM2D over NB in highly asymmetric

settings can in fact be higher (average 11.4%) than in more balanced data (average

10% in Figure 3.7), provided EM2D is initialized properly. Nigam et al.’s experi-

ence [NMTM00] seems to corroborate that the gains from semi-supervised learning

are larger when labeled data is limited.

Comparison with the A&S algorithm

For our A&S implementation, we fixed the feature set to TA ∪ TB as found by

Rainbow, and also fixed the λ parameter to one that gave the best accuracy for

Rainbow for each of A and B prediction.
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Making a fair comparison between A&S and EM2D involves exposing to EM2D at

least the fully-labeled tune-set that A&S uses. In fact, it is very difficult to compare

the active-learning version of A&S with EM2D in a principled way, because A&S

inspects fully-labeled documents (not the labels, but the text) outside the tune-set

as well. (EM2D is not designed for active learning.) Therefore, we focused on the

randomly sampled tune-set paradigm only, because that could be used with both

A&S and EM2D.

In addition, given the large skew between half-labeled and fully-labeled popula-

tions, we used damping to re-scale them to the same effective size (see Section 3.2.2

for more details).
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Figure 3.10: Accuracy of the A&S algorithm compared with EM2D for 10% and 90%

tuneset (T) and A&S active learning (AL).

In Figure 3.10 we present the accuracy of A&S with 10% and 90% randomly

sampled tuneset as well as a tuneset of size 10 picked by active learning (AL) from the

entire test set of fully-labeled documents. Broadly, A&S and EM2D are comparable,

but EM2D edges over A&S by a maximum of 20% and an average of 4% for the 10%

tuneset and 2% for the 90% tuneset. When EM2D loses to A&S, the gap is very small.
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EM2D for classifying zero-label documents

We used a custom crawled Bookmarks dataset specifically for the experimental set-

ting explained here. The Bookmarks data set was created mainly to study zero-labeled

classification. We collected and inspected a dozen or so bookmark files published on

the Web. We found it very common for bookmark authors to collect URLs into co-

herent topics. Usually, these topics had strong correspondence with one or few topics

in Yahoo!/Dmoz. However, the number of URLs per topic was small (say 3–20), ex-

actly the scenario we painted at the outset. We derived sample bookmark topics B

from these bookmark collections, and populated them from Yahoo! (A) URLs, and

removed them from DA. The dataset had 47247 documents in A with 154 classes and

365 documents in B with 7 classes with an intersection size of 1289.

In this scenario, we are required to finally produce a classifier for B which does not

depend on the test instances being labeled with A labels. In Section 3.2 we discussed

two methods for deploying EM2D in this setting: EM2D-D, a model aggregation

method, and EM2D-G which is essentially EM2D, except that the A-labels are supplied

as guesses from an A-classifier.

Figure 3.11 shows the accuracy for EM2D-D, EM2D-G, EM1D and NB, for various

sizes of labeled training sets, and two choices of the damping factor L discussed at

the end of Section 3.2. These numbers are for the Bookmark data set. The accuracy

values were averaged over three random choices of the training set for each choice of

training set size.

As the fraction of training data is increased, the benefit of semi-supervised learning

reduces, which is obvious. The damping factor does essential damage control when

there are many labeled documents, but can hurt when the labeled set is very small.

These observations corroborate with earlier EM1D results by Nigam et al. [NMTM00].
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Figure 3.11: EM2D with guessing is the best methods for classifying zero-label doc-

uments. NB accuracy is shown only once for each size of the training set, because it

does not change with L.

Unlike Nigam et al., EM1D could improve beyond NB only for the smallest training

sets in our case. One possible reason is that the unlabeled Yahoo! dataset, from

which EM1D adds instances, is significantly different, and has many more irrelevant

classes, compared to the initial labeled data in our Bookmark dataset. Nigam et al.’s

experiments drew unlabeled and labeled documents from the same distribution.

Finally, we were surprised to see that EM2D-G performed better than EM2D-

D. Recall that EM2D-D is really a 1d classifier, which should reduce data sparsity

and improve the reliability of its parameter estimates compared to EM2D. Despite

this benefit, model aggregation appears to hurt. Even a noisy guess at the A-label,

followed by a row-conditioned classification, outperforms the aggregated model.

3.5 Related work

In recent years, EM-like semi-supervised learning has been enhanced in several

ways and applied to a number of settings. Extending beyond EM, Liu et al. [LLYL02]

and Yu et al. [YHC02] consider the realistic situation where, apart from labeling only
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a few samples, the user is also unlikely to spend the effort to mark negative samples.

Their EM-like algorithms can work on a set of positive examples P and a mixed pool

of samples M which may contain both positive and negative instances.

Cross-training is related to multi-task learning or life-long learning, in which

information (features, models, etc.) from one learning task is used for another.

Thrun [TO96] discusses clustering learning tasks (not instances) and picking, for a

given task, other related tasks. This information influences the distance function in a

nearest-neighbor classifier. Caruana [Car97] discusses how to use multi-task learning

in neural networks, and Baxter [Bax00] provides a PAC analysis. Cross-training is a

two-task setting with no instance submitted to more than one task. The similarity

between tasks falls out naturally as we estimate πα,β.

A recent approach to semi-supervised learning (which might appear superficially

similar to cross-training) is co-training, proposed by Blum and Mitchell [BM98]. In

co-training, two learners use disjoint subsets of attributes, and assign labels from

only one taxonomy. Each learner picks unlabeled training instances that it is most

confident about classifying correctly, and makes it a labeled training instance for the

other learner. Co-training and cross-training are quite different things: two label sets

are central to our formulation, and our approach depends on modeling a single term

distribution conditioned on a pair of labels.

Independently, Zhang et al. [ZL04] have recently proposed the co-bootstrapping

framework for integrating taxonomies and they also present mappings between the

source and master taxonomies. Like SVM-CT their approach also uses clues in the

source taxonomy to enhance classification in the master taxonomy, but their exper-

iments use only URL and description information from publicly available directory

sites unlike our methods which also take the full text of the pages into account. Ra-

jan et al. [RPG05] have very recently proposed a maximum likelihood approach for
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integrating taxonomies. They exploit the hierarchical structure of taxonomies unlike

our assumption of flat label-sets and obtain natural mappings between the source and

master taxonomies. They additionally insert source classes in appropriate places in

the master taxonomies, even creating new classes when required.

The Glue system [DMDH02] is also similarly motivated to cross-training in the

semantic web domain task of mapping ontologies. The approach they follow is to find

the most similar class in the related ontology by aggregating classification decisions

of one set of classes on documents of the other. Our approach is different and more

complex than this setting.

3.6 Discussion

Aggregating information about placement of documents in other taxonomies is seen

to be useful in training better classifiers for the taxonomy at hand. For generative

methods like EM2D, this model aggregation significantly helps in training because

class conditional word statistics are now drawn from a richer source of information.

For similar taxonomies this results in more stable and smooth parameter estimates

from larger training data. EM2D is built upon NB classifiers which are the simplest

generative classifier. We would like to investigate the application of cross-training

to other generative models, specifically the newer generative models like LDA and

BayesANIL.

Discriminative methods benefit only slightly from cross-training. SVMs are already

high accuracy learners and it is difficult to further boost their accuracy, yet modest

improvements do result. The other interesting result of discriminative cross-training is

the discovery of mappings between taxonomies. The Appendix, Chapter 8.1, shows ex-

tensive examples of mappings learned between parts of our Dmoz and Yahoo datasets
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used in Section 3.4.2. Both these results can be understood by seeing that the new

label dimensions we add during cross-training have high signal compared to particular

term features when strong mappings between source and target classes exist.

It is known that adding noisy redundant features has a regularising effect on linear

classifiers [SD99]. The label dimensions added in the case of closely related mappings

between label-sets is one form of adding features that are redundant and noisy with re-

spect to the target class label. This could be leading to a regularising effect on learning

the label-sets. This phenomenon needs further theoretical study and investigation.

3.7 Summary

In this chapter, we explored the notion of mappings across label-sets in a general

semi-supervised framework called cross-training. We leveraged noisy, incomplete map-

pings between label-sets to improve classification in both generative and discriminative

settings. Through a detailed experimental study using real-life and semi-synthetic data

from Yahoo! and DMOZ, we show that for both discriminative and generative models,

cross-training is decisively better than the best baseline classifier we could induce on

either of the label-sets alone.

More reassuring are the observations that show our approach to compare favorably

with the best existing approach, while providing a more sound foundation. Inspecting

the components of learned hyper-planes in SVM-CT along the label dimensions gives

us some interesting insights into various kinds of mappings [SCG03, GS04] between

the label-sets A and B. Detailed examples are provided in the Appendix. These

mappings could prove useful for ontology maintenance tools.
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Chapter 4

Scaling multi-class classification

problems

4.1 Introduction

In the previous chapter we looked at exploiting mappings between sets of classes.

In this chapter we propose the second relationship between classes, that of confusion

within a label-set. We develop the notion of confusion to deal with large datasets in

the form of hierarchies. Our main contribution is an algorithm based on the notion of

confusion that helps in training multi-class classifiers with significant speedups without

loss in accuracy.

Handling very large data collections and issues of scale have become very impor-

tant in the context of the web. Text classification systems have also matured to the

point that their large scale deployment is now possible. The availability of very large

controlled data corpora like RCV1 (described in Section 2.4.2) has further sparked

interest in large scale text classification systems. Web directories contain a few mil-

lion high quality manually classified pages and these are a ripe target for training and

deploying large scale systems. The scalability and efficiency of classifiers at this scale

remains an important research area.

65
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An important phenomenon we come across when dealing with large amounts of

data or a very large number of classes is that of confusion. Sparse training data,

obscure notions of classes and insufficient class separation, all lead to loss in accuracy

of learning algorithms due to documents being classified into wrong though related

classes. Confusion is the common phenomenon of mis-classification into related classes.

This is captured very well in a confusion matrix that plots the true versus predicted

classes of instances [God02] in a quickly understandable summary. Confusion occurs

when the classifier cannot distinguish the true target class from a very similar adver-

sary and mis-classifies the instance into the other class.

We focus on this notion of confusion in this chapter. We next look at exploiting

confusion to create hierarchies as a natural answer to the problem of organising large

amounts of data with many classes. We also look at problems associated with training

multi-class classification systems with many classes.

4.1.1 Hierarchical methods

One way to mitigate the effect of confusion in large text collections has been

to organize classes into hierarchies. The hope in such a hierarchical organization is

that different features will be active at different parts of the hierarchy, and it should

be possible to build high performance classifiers using this is-a relationship between

classes. A typical hierarchy like Dmoz has first level children comprising of broad

ranging topics like Sports, Recreation, Science, and Shopping. Within Sports, the

sub-classes could be Football, Hockey, and Volleyball. BOW classifiers depend upon

features (textual tokens, n-grams, phrases) like game, player, and referee to distinguish

between Sports and other classes at the top level. Within Sports, these features lose

discriminating power since all sub-classes will equally likely contain these words. Other

features like batsman, volley, or stick will now become important for discrimination at
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the second level in the hierarchy.

Confusion between classes in a classification setting is the result of either obscure

or insufficient specification of the label-set or falls out of an insufficient feature selec-

tion and representation mechanism. The occurrence of certain keywords in documents

of classes does not always follow our intuitive notion of separation between classes.

The bag-of-words model typically employed to represent documents further leads to

overlapping concept clouds in the term-dimensional vector space. Such confusion be-

tween concepts leads to erroneous classification not only in computer systems, but

also for humans; controlled studies involving humans classifying content show as high

as 30% disagreement between reviewers [LYRL04]. Confusion results in loss of accu-

racy and it’s effect can be easily seen in a multi-class consufion matrix. We exploit

this notion of confusion for construction and deployment of hierarchies of classes in

Section 4.2. Experimental results show the problem of multiplication of errors across

levels in hierarchical classification in Section 4.2.2.

4.1.2 Non-hierarchical methods

Support Vector Machines (SVMs) [Vap95] are a kind of discriminative classifier

which have shown superb performance for classifying text and other data. They are

accurate, robust, and quick to apply to test instances. We have seen a brief overview

of support vector machines used in text classification in Section 2.3.2. The elegant

theory behind the use of large-margin hyperplanes to separate two classes cannot be

extended easily to separate N mutually exclusive classes. The most popular approach

to multi-class classification is the one-vs-others approach, the other approaches being

pair-wise decomposition, error correcting output codes, and DAGSVM, all reviewed

earlier. All these decomposition approaches require training an ensemble of classifiers

and training every classifier takes time quadratic to the number of training instances.
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For very large datasets this presents a scaling up problem.

Generative classifiers, in contrast, are essentially independent of the number of

classes as far as training time is concerned. A popular generative classifier for text like

naive Bayes trivially scales with the number of classes as they process each document

only once. Also, NB classifiers train much faster than SVMs owing to their extreme

simplicity, but in terms of accuracy, the linear SVM has decisively outperformed NB

owing to the latter’s high bias in assuming attribute independence.

We would like to devise a method that achieves the best of both worlds: scalability

of NB classifiers w.r.t. number of classes and accuracy of SVMs. We do this in two

stages. In the first stage we use the fast multi-class NB classifier to compute a confusion

matrix, which is used to reduce the number and complexity of two-class SVMs that are

built in the second stage using the one-vs-others approach. During testing, we first get

the prediction of a NB classifier and use that to selectively apply only a subset of the

two-class SVMs, as indicated by the confusion matrix. On standard benchmarks, our

algorithm is 3 to 6 times faster than multi-class SVMs, and has superior scalability in

terms of memory requirements and training set size. In terms of accuracy, the method

is better than NB classifiers and comparable or superior to SVMs.

Our main contribution in this chapter is the GraphSVM algorithm that efficiently

scales up training of high-accuracy multi-class classifiers in Section 4.3. In Section 4.4

we see that this algorithm turns out to be competitive or even better than the normal

multi-class classifiers [GSC02] in terms of accuracy while being significantly better in

terms of training time and memory requirements. We review related work in Sec-

tion 4.5 and summarise our work in Section 4.7.
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4.2 Automatic construction of hierarchies for large-

scale data organisation

In this section we look at topic hierarchies in detail. We look at methods of

automatically constructing topic hierarchies based on classifiability properties of the

data at hand. We use a confusion matrix of a NB classifier to generate a dendrogram

of classes and use this dendrogram to create a simple two level hierarchy. We study the

greedy hierarchical classification process of such a hierarchy and note some interesting

results.

The genesis of our approach lies in the class relationships derived from a confusion

matrix, easily generated from a fast classifier like NB. This can be obtained using

a held-out validation dataset. For example, in Figure 4.1 we show an example of a

confusion matrix built on the 20-newsgroup dataset (details in Section 2.4.2) using an

NB classifier. The rows show actual classes and the columns show predicted classes.

Figure 4.1: 20-newsgroups confusion matrix

The matrix clearly shows that different classes have different degrees of confusion

with other classes. Some classes, like rec.sport.hockey, are well separated from the

rest, whereas others like comp.os.ms-windows.misc are easily confused with others.
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The mis-classifications of a class are usually limited to a small subset of classes. In fact,

in most cases, the rows and columns of a matrix can be rearranged manually as shown

in Figure 4.2 so as to reveal clusters of classes that confuse with each other. These

appear as blocks along the diagonal of the confusion matrix. Not surprisingly, in many

cases, these clusters are formed of classes whose names can be immediately recognized

as forming natural hierarchies. The confusion matrix provides a domain-independent

method of deriving this relationship.

Figure 4.2: 20-newsgroups re-organized confusion matrix.

We would like to automate this re-organization of classes into clusters of similar

classes [GSC02]. We want to automatically generate topic hierarchies from this given

flat organisation of classes. Each class is represented by a row in the confusion matrix.

For each class, it’s respective row is converted to a normalized N dimensional vector

that denotes how much the class confuses with other classes. We then use a distance

measure like the Euclidean Ln or the KL-distance measure to compute distance be-

tween the classes. These distances are used to cluster the classes using a hierarchical

agglomerative clustering (HAC) algorithm. The output of HAC is a dendrogram that

we analyze to determine the clusters that provide the maximum inter-class separation.



Chapter 4. Scaling multi-class classification problems 71

The dendrogram for the confusion matrix at hand is given in Figure 4.3.

Figure 4.3: Dendrogram for 20-Newsgroups

Note that from the root of the dendrogram, as we proceed to the left of the figure

beyond a base distance of 1.0, the number of clusters merging per unit distance change

drastically. We can plot the distances at which clusters merge against the merge

numbers for the dendrograms of each dataset. Cluster merge distances for the 20-

newsgroups, Reuters, and ODP datasets are given in Figure 4.7.

Figure 4.4: 20-

newsgroups

Figure 4.5: Reuters-

21578
Figure 4.6: Dmoz dataset

Figure 4.7: Merge distances for the datasets plotted against cluster merge number

We clearly note a point of inflection in the cluster merge distance plots. Beyond this
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point of inflection, there are a very small number of highly dissimilar clusters. This

can be explained by the nature of Ward’s algorithm for hierarchical agglomerative

clustering. Consider some vector space with an underlying pattern of clusters. Very

similar clusters are consolidated first as the algorithm proceeds. Toward the end of

the HAC run, we will reach a stage when huge clusters are left to be merged but the

distance between them is very large. This indicates that these clusters are not similar

to each other. This analogy can be applied to our clustering of classes in confusion

space. After the point of inflection, only highly dissimilar groups of classes are left to

be merged.

For the ODP dataset, we see this point to occur at merge number 335. Since

there are 359 classes, we are left with 22 top level clusters of classes largely dissim-

ilar to each other. Similarly, the 20-newsgroups dataset gives us 5 groups and the

Reuters dataset gives us 8 groups. These are the groups we use for the multi-level

classifiers detailed in Section 4.2.1. We provide sample dendrograms in the appendix.

For the 20-newsgroups dataset, we see from the manually arranged Figure 4.2 and the

automatically generated clustering using Figure 4.3 that generated clusters in both

assignments are very similar. This automated method is thus a method for automat-

ically generating two-level hierarchies from the confusion matrix. We will use these

constructed two-level hierarchies for classification next.

4.2.1 Hierarchical multi-class classification

We propose to exploit the clustering of classes to prune the number and complexity

of two-class classifiers needed for a leaf-level one-vs-others SVM ensemble. An obvious

approach is to arrange the clusters in a two-level tree hierarchy and train a classifier

at each internal node. We have already seen above how such a two-level hierarchy

can be automatically constructed. If we restrict to NB classifiers, Mitchell [Mit98] has
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shown that if the same feature space were used for all the classifiers and no smoothing

is done, the accuracy would be the same as that of a flat classifier. In practice, each

classifier has to deal with a more easily separable problem, and can use a independently

optimized feature set; this should lead to slight improvements in accuracy, apart from

the gain in training and testing speed. We propose to use a combination of NB and

SVM classifiers at the two levels.

We first build a top-level classifier to discriminate amongst the top-level clusters of

labels, called the Level 1 (L1) classifier. This top-level classifier could either be a NB

or SVM classifier. Even with SVM, the training time will be smaller since the number

of classes is reduced, although each two-class SVM will still need all documents. At

the second-level (L2) we build multi-class SVMs within each cluster of classes. The

total number of SVMs at the second level will be close to N but the number of classes

per SVM is significantly reduced.

Each L2 classifier can concentrate on a smaller set of classes that confuse with each

other. For a generative classifier like NB, we expect this to result in better feature

selection and thus enable finer distinctions amongst the confusing classes [CDAR98].

For SVMs, the spread of the negative (‘others’) class is reduced, which we expect will

make separability easier and/or better.

4.2.2 Evaluation

We evaluate the accuracy and training time for solving the multi-class problem

using a two-level hierarchy. We compare four methods: Flat multi-class NB classifiers

(MCNB), flat multi-class SVMs (MCSVM) using the one-vs-others approach, NB

classifiers at both the levels (L1 and L2) of the hierarchy (Hier-NB) and NB classifier

at L1 followed by SVMs at L2 (Hier-SVM).

We notice from Figure 4.8 and Figure 4.9 that while the training times for Hier-
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Figure 4.8: Accuracy of different hierarchi-

cal methods for 20NG

Figure 4.9: Training time of different hier-

archical methods for 20NG

Table 4.1: Level-wise comparisons for 20newsgroups data

Method Accuracy (in %)

MCNB 85.27

MCSVM 89.66

NB-L1 93.56

SVM-L1 95.39

NB-L2 with NB-L1 89.01

NB-L2 with Perfect-L1 88.41

SVM-L2 with NB-L1 92.04

SVM-L2 with Perfect-L1 91.65

NB and Hier-SVM are lower than for MCSVM, the accuracy is also reduced. The

accuracy for Hier-NB is even lower than that of MCNB. Hier-SVM has lower accuracy

than MCSVM though it is slightly better than MCNB. Also, training time of Hier-

SVM is less than half that of MCSVM.

We show in Table 4.1, a comparison of accuracy of the two levels separately for both

NB and SVM classifiers. For L2, we show two kinds of accuracy, first on documents

that get correctly classified to their correct group by L1, and second the absolute

accuracy of L2 assuming a perfect L1 classifier. As expected, all the L1 and L2
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classifiers are individually more accurate than the original flat classifier, as noted

in [CDAR98] and as we expected in Section 4.2.1. Even though NB-L2 has an accuracy

of 89.01%, combining with the NB-L1 accuracy of 93.56% leaves us with a resultant

accuracy of Hier-NB of 83.28%. Although NB-L1 and NB-L2 are both individually

better than MCNB (85.27%), we see that compounding of classification errors leaves

Hier-NB worse off than MCNB. Similarly, SVM-L2 with a NB classifier at L1 (Hier-

SVM) has an accuracy of 92.04%. The accuracy of Hier-SVM still drops down to

86.12% which is slightly better than MCNB, but is worse than the MCSVM accuracy

of 89.66%. If we replace NB-L1 with SVM-L1 having 95.39% accuracy, the overall

accuracy for both Hier-NB and Hier-SVM improves slightly, but the training time

gets worse.

Classification results on such hierarchies (Pachinko machine [KS97]) against a flat

classifier built on leaf nodes have proved inconclusive except in special cases. Hierar-

chies suffer from multiplication of errors at each level as classification proceeds down.

There is no conclusive comparison in [CDAR98, KS97] which decisively states whether

a hierarchical classification scheme is better than a flat one for NB classifiers. These

previous studies have either restricted the number of features at each node in the hi-

erarchy or have tried to equalize the number across the flat and hierarchical schemes.

It is not clear whether by attempting to equalize the number of features, one of the

classification schemes is getting compromised.

The main reason for the low accuracy of the hierarchical approaches is the com-

pounding of errors at various levels. Even though the accuracy at both levels is higher

than that of a flat classifier, the product of their accuracies falls short of the accu-

racy of a flat classifier. Increasing the levels beyond two is expected to worsen this

compounding effect. This led us to design a new algorithm GraphSVM, that attempts

to ensure that the first-stage classification will make the overall process fast, but in-
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accuracy of the first-stage classifier will not jeopardize overall accuracy. We describe

GraphSVM in the next section.

4.3 Efficiently training multi-class classifiers in non-

hierarchical setups

In this section, we represent class confusion in a general way using a graph, which

may connect a class with any other class, instead of restricting confusion to a hierarchy

of disjoint groups as in the previous approach.

As in the previous approach, we start with the confusion matrix obtained by a

fast multi-class NB classifier M1. For each class i, we find the set of classes F (i)

such that more than a threshold (t) percentage of documents from each class in F (i)

gets mis-classified as class i. For example, for the confusion matrix in Figure 4.1, we

find that for the class alt.atheism and with a threshold of 3%, F (alt.atheism) =

{talk.religion.misc, soc.religion.christian}.

Next, for each node i with non-empty F (i), we train a multi-class classifier M2(i)

to distinguish amongst the classes in {i} ∪ F (i). These classifiers are constructed

using a more accurate and possibly slower method like SVMs. During testing, we first

classify a document d using M1. If the predicted class for d is i, we feed it to M2(i),

if any, and get a refined prediction j. We denote this method GraphSVM.

In the above example, when a test instance is predicted as alt.atheism by M1,

we get the prediction refined by a one-vs-others SVM, M2(i), between the classes

alt.atheism, talk.religion.misc and soc.religion.christian. The prediction

of M2(i) is returned as the final answer for the test instance.
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4.4 Experiments

Our aim in creating GraphSVM was to combine the speed of NB with the accuracy

of SVMs. GraphSVM builds on NB but we hope it will perform better in terms

of accuracy while being significantly more efficient than training full-fledged SVM

ensembles. We compare GraphSVM to multi-class NB (MCNB), multi-class SVMs

(MCSVM) and the hierarchical approach with a NB classifier at L1 and SVMs at

L2 (Hier-SVM). We compare the algorithm on accuracy, training time and scalability

with respect to size of the training set.

For the experiments in this section we used the 20-newsgroups dataset described in

Section 2.4.2 and the Reuters-21578 dataset described in Section 2.4.2. All experiments

were performed on a 1.4GHz P4 machine with 512MB RAM, running Linux. Rainbow 1

was used for feature selection, text processing and experiments involving NB classifiers.

SVMLight 2 was used for all experiments involving SVMs.

The ODP dataset: Additional experiments were also performed on a very large

custom crawl of the DMOZ directory in the year 2000. This crawl contained more than

350 classes and 180, 000 documents. This was a noisy dataset with lots of junk pages

crawled from the internet; there were about 650, 000 unique features in this dataset,

though only a few thousand were used after feature selection. The appendix of this

thesis gives some parts of the dendrograms we derived using the methods outlined

in this chapter. Dendrograms for the ODP dataset as well as the 20-newsgroup and

Reuters-21578 datasets are given in the appendix.

1http://www.cs.cmu.edu/~mccallum/bow/
2http://svmlight.joachims.org/
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4.4.1 Accuracy and training time

In Figures 4.10 and 4.11 we show the accuracy and training time for the four

methods on the 20ng and Reuters datasets.

Figure 4.10: Accuracy comparison for all

methods for both datasets

Figure 4.11: Training time comparison for

all methods for both datasets

In Figure 4.10, for the 20NG dataset, we observe that the accuracy of GraphSVM

at 88.72% is slightly smaller than the MCSVM accuracy of 89.66%. The accuracy of

GraphSVM is higher than the previous Hier-SVM accuracy of 86.12%. For the Reuters

dataset, GraphSVM has the highest accuracy of 94.86% while MCSVM and MCNB

have accuracies of 92.86% and 92.47% respectively.

From Figure 4.11 we observe that GraphSVM has the fastest training time among

the approaches involving SVMs, and for both the datasets, is more than a factor of 3

faster than MCSVM. As expected, MCSVM is the slowest to train.

4.4.2 Scalability with number of classes

We evaluated the training time of the different approaches with increasing number

of classes. We started with 5 randomly picked classes, and added 5 randomly picked

classes at a time for both the datasets. In Figures 4.12 and 4.13 we observe that the

gap between the training time of GraphSVM and MCSVM increases as the number of
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classes is increased.

Figure 4.12: Training time vs. Number of

classes for 20NG

Figure 4.13: Training time vs. Number of

classes for Reuters

Figures 4.14 and 4.15 show that in all cases GraphSVM continues to maintain

the high accuracy vis-a-vis MCSVM and MCNB. For the 20NG dataset (Figure 4.14),

GraphSVM maintains an accuracy of within 1% of MCSVM and for the Reuters dataset

(Figure 4.15) GraphSVM is on an average, 3% better than MCSVM.

We notice a large dip in Figure 4.15 for MCNB and MCSVM. The Reuters dataset

is highly skewed in the distribution of instances per class. Figure 4.15 additionally

shows the total number of test instances over which the micro-averaged accuracy values

are reported. For 25 classes there are only 166 test instances. The 7% difference

between GraphSVM and MCNB and MCSVM is due to only 11 additional instances

correctly classified by GraphSVM. Since these 25 classes are thinly populated, most

of the mis-classifications seen in the confusion matrix are larger than the threshold

and contribute to edges in the GraphSVM algorithm. These mis-classifications are

corrected by the more focused SVMs in the GraphSVM method. The graph smoothens

out after 30 classes when there are a larger number of instances and the accuracy of

GraphSVM is consistently better.
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Figure 4.14: Accuracy vs. Number of

classes for 20NG

Figure 4.15: Accuracy vs. Number of

classes for Reuters

4.4.3 Scalability with training set size

Training time: In Figure 4.16, the size of the training set was varied from 10% to

70% of the whole data, while keeping the relative train-test ratio constant at 70:30. We

observe that the training time of GraphSVM is nearly linear in the training set sizes,

while for multi-class SVMs the training time increased super-linearly with training set

size. This causes the gap between the two methods to become more prominent for

larger datasets.

Accuracy: In Figure 4.16 we show the corresponding accuracy values against vary-

ing percentages of training set sizes for 20NG. We observe that as the accuracy of

MCSVM increases with increasing number of training instances and GraphSVM closely

tracks the increase and is always more accurate than MCNB.

Maximum memory: In Figure 4.16 the percentage of training documents is plotted

against the maximum memory required to train any SVM model in the GraphSVM and

MCSVM approaches. In both cases, multiple one-vs-others SVMs are learned, but the

size and heterogeneity of the negative (‘others’) class varies largely leading to different

memory requirements. In MCSVM, this negative class contains the entire dataset
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apart from the positive class, whereas it is greatly pruned in the GraphSVM approach.

We notice that GraphSVM requires less than one-fourth the memory required by

MCSVM.

Figure 4.16: Training time, accuracy and maximum model memory with varying train-

ing set sizes for the 20NG dataset

4.4.4 Effect of the threshold parameter

An important parameter of GraphSVM is the threshold used to decide what SVMs

to create in the second stage.

In Table 4.2 we show the accuracy and training time for different values of the

threshold (t). We see that a threshold of 3% to 7% is appropriate for both these

datasets because of the base accuracy of the NB classifier chosen to get the confusion

matrix.

If the threshold value is kept unnecessarily high, we will hardly have any graph to

construct, assuming the base classifier has a decent accuracy. On the other hand, even
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Table 4.2: Accuracy and Performance

Method Threshold Training Accuracy

t time (secs) in %

Reuters

MCSVM - 158 92.86

GraphSVM 0.07 36 94.91

GraphSVM 0.05 41 94.86

GraphSVM 0.03 46 94.86

GraphSVM 0.01 65 95.33

20NG

MCSVM - 235 89.66

GraphSVM 0.07 63 87.92

GraphSVM 0.05 73 88.72

GraphSVM 0.03 73 88.52

for a moderately accurate base classifier, a very low threshold (say 2% or less) will

make a densely connected graph. In that case, GraphSVM will approach MCSVM.

As seen in Section 4.4.1 and Section 4.4.2, GraphSVM is more accurate than

MCSVM and MCNB for the Reuters dataset and also requires less training time.

The scalability results for the Reuters dataset w.r.t. training set size are the same as

that for the 20NG dataset in Section 4.4.3, viz. GraphSVM is highly scalable w.r.t.

training time, accuracy and memory requirements as compared to MCSVM. The de-

tailed results are omitted here for space constraints.

4.5 Related work

A general framework for solving multi-class problems using a collection of two-

class problems is to associate it with a coding matrix M where each class is a row
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and each two-class classifier is a column [DB95, ASS00]. Each element aij is +1,−1 or

0, where +1 denotes the class i serving as a positive class in classifier j, −1 denotes

i serving as a negative class in j and 0 denotes that class i does not participate in

classifier j. The coding matrix for one-vs-others will have N columns with +1 on

the diagonal and −1 in all other entries. For Max-Wins [Kre99], the coding matrix

will have
(

N
2

)
columns and each column will have a single +1 and −1 and the rest

of the entries 0. Error Correcting Output Codes (ECOC) classifiers are proposed

in [DB95] where the +1s and −1s are chosen in such a way that the different rows

are maximally separated. During testing, the outcome of each classifier is treated as a

vector and compared with each row. The row to which it is closest is returned as the

predicted class. Ghani [Gha00] reports experiments with a number of ECOC classifiers

to solve large multi-class text classification problems using NB. They report significant

improvement in accuracy with the ECOC method on the Industry section dataset.

Rifkin et al. [RR01] repeated similar experiment with Support Vector Machines as

the base classifier. On the standard text benchmarks, they found that for SVMs the

various ECOC classifiers did not provide any accuracy improvement over the simple

one-vs-others method. Platt et al [PCST00] present a modification of the testing

procedure of the Max-Wins algorithm which reduces the number of kernel evaluations

during testing. They arrange the various two-class classifiers in a DAG structure

(DAGSVM), that is used to order the application of various two-class SVMs during

testing. This method does not affect the training time and the accuracy is comparable.

4.6 Discussion

GraphSVM partitions a classification task between NB and SVMs such that SVMs

are only invoked on small subsets of classes that get mis-classified by the NB classifiers.
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We can claim that GraphSVM will not be worse than MCNB provided that the train-

ing data is representative of the test data. GraphSVM can choose not to use any

second stage SVM refinements in the rare case where the SVM classifier is found to be

worse than a NB classifier on a validation dataset. Compared to MCSVM, the main

reason GraphSVM may be worse is high positive values of the threshold t. We can

always decrease the threshold, at the expense of increasing the training time, to match

MCSVM accuracy as shown in Section 4.4.4. In most cases, we expect the strengths

of NB and SVMs to combine to give performance better than both individually.

The main property that we rely on for accuracy is that the set of classes that a class

confuses with, using a NB classifier, should be the same for the training and test set.

The relative distribution of the confusion matrix is not required to remain unchanged,

provided entries that were previously below the threshold t do not suddenly increase

beyond it.

The benefit of GraphSVM will be greatest when the mis-classification of the first

stage are spread across a small number of classes. The worst case is when mis-

classifications of a class are uniformly distributed over many classes. In this case,

the algorithm will reduce to multi-class SVMs. In most practical datasets that is

rarely the case.

4.7 Summary

We have described GraphSVM, an effective framework for extending discriminative

classifiers like SVMs to handle data with a large number of classes, accurately and

efficiently. GraphSVM estimates a measure of affinity between classes which depends

upon the severity of confusion between these classes by a fast classifier like NB. This

confusion indicates a clustering of classes which is used to limit the number and



Chapter 4. Scaling multi-class classification problems 85

complexity of the SVMs that need to be trained for multi-class categorization.

GraphSVM beats the accuracy of multi-class NB decisively even though it builds

on a NB classifier. GraphSVM outperforms SVMs w.r.t. training time and memory re-

quirements. It matches or even exceeds the accuracy of multi-class SVMs. GraphSVM

is very simple to understand and requires negligible coding, but it can be of substantial

utility while dealing with very large classifiers with tens of thousands of classes and

millions of instances. In future work, we would like to explore using SVMs with the

positive set containing more than one class. The composition of this positive set of

related candidate classes is as yet unexplored.
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Chapter 5

Enhancing multi-labeled

classification

5.1 Discriminative multi-labeled classification

In the previous chapter we studied the phenomenon of confusion between related

classes. We turn our attention in this chapter to the related idea of overlap between

related classes. The facet of text classification most significantly affected by overlap-

ping class boundaries is multi-labeled classification and we present three discriminative

algorithms for it.

The task in multi-labeled classification is to assign all appropriate class labels to

documents of interest. In multi-labeled classification a document can have up-to k

out of n labels where 1 ≤ k < n. Most typical applications require the ability to

classify documents into one out of many (> 2) classes but often it is not sufficient

to talk about a document belonging to a single class. This could either be due to

a document comprising of multiple parts, each from a different class, or the classes

themselves could be overlapping concepts. For example, a document describing the

politics involved in the sport of cricket, could be classified as Sports/Cricket, as well

as Society/Politics. When a document can belong to more than one class, it is

87
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called multi-labeled. Multi-labeled classification is harder than choosing one out of

many classes because the number of labels for each document needs to be determined

in addition to dealing with overlapping class concepts.

Discriminative multi-class classification techniques, including SVMs, have histori-

cally been developed to assign an instance to exactly one of a set of classes that are

assumed to be disjoint. In contrast, multi-labeled data, by its very nature, consists of

highly correlated and overlapping classes. For instance, in the Reuters-21578 dataset,

there are classes like wheat–grain, crude–fuel, where one class is almost a parent of

the other class although this knowledge is not explicitly available to the classifier.

Such overlap among classes hurts the ability of discriminative methods to identify

good boundaries for a class. We devise two techniques to handle this problem in

Section 5.3. We exploit strong mutual information among subsets of classes to “pull

up” some classes when the term information is insufficient. In the next section, we

present a new method to directly exploit such correlation among classes to improve

multi-label prediction.

5.1.1 SVMs for multi-labeled classification

Most discriminative classifiers, including SVMs, are essentially two-class classifiers.

We have seen in Section 2.3.2 various methods of decomposing multi-class problems

into binary classification problems. When the one-vs-others method of creating binary

ensembles is used for multi-labeled classification special care is warranted. Usually for

each of the classifiers in the ensemble, the positive side contains the class of interest and

the negative side contains the remaining (n−1) classes. In multi-labeled classification

since document have multiple labels, the same document could occur on both the

positive as well as negative sides of the binary classifiers. Such duplicates need to be

removed from the negative side.
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The interpretation of one-vs-others changes here to an ensemble of A-vs-notA

classifiers. For each label ci, the positive class includes all documents which have ci as

one of their labels and the negative side includes all documents which do not have the

label ci. During application, the set of labels associated with a document d is {ci},

such that wci
· d + bci

> 0. This is the basic SVM method (denoted SVM) that serves

as a baseline against which we compare other methods.

Text classification with SVMs has the problem of all classifiers in an ensemble

rejecting an instance. In the modified one-vs-others, all constituents of the ensemble

emit a (wci
· d + bci

) score; for multi-labeled classification we admit all classes in

the predicted set, whose score wci
· d + bci

> 0. However, in practice, we find that

a significant fraction of documents get negative scores by all the classifiers in the

ensemble. One technique of selecting good thresholds other than 0 to counter this

problem are Yang’s rank, proportion, and score-based thresholding techniques [Yan01].

In this chapter, we present algorithms which use existing discriminative classification

techniques as building blocks to perform multi-labeled classification. We propose two

kinds of enhancements to limitations of the basic SVM method outlined above. First,

we present a new algorithm which exploits correlation between related classes in the

label-sets of the corpus in Section 5.2. This algorithm combines text features and in-

formation about relationships between classes by constructing a new kernel for SVMs

with heterogeneous features. In Section 5.3, we present methods of improving the

margin of SVMs for better multi-labeled classification in the presence of overlapping

class boundaries. We present experiments in Section 5.4 comparing various methods.

We review related work in Section 5.5 and summarise in Section 5.7.
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5.2 Combining text and class membership features

The first opportunity for improving multi-labeled classification is provided by the

co-occurrence relationships of classes in label sets of documents. We propose a new

method for exploiting these relationships. If classification as class Ci is a good indicator

of classification as class Cj, one way to enhance a purely text-based SVM learner is

to augment the feature set with |C| extra features, one for each label in the dataset.

The cyclic dependency between features and labels is resolved iteratively.

Training: We first train a normal text-based SVM ensemble S(0). Next, we use

S(0) to augment each document d ∈ D with a set of |C| new columns corresponding

to scores wci
· d + bci

for each class ci ∈ C. All positive scores are transformed to

+1 and all negative scores are transformed to −1. In case all scores output by S(0)

are negative, the least negative score is transformed to +1. The text features in the

original document vector are scaled to f(0 ≤ f ≤ 1), and the new “label dimensions”

are scaled to (1− f).

The differential scaling of term and feature dimensions results in a new kernel

function applied to the documents. The kernel function in linear SVMs gives the

similarity between two document vectors, KT (di, dj) =
〈di·dj〉
|di||dj | . When document vectors

are scaled to unit L2 norm, this becomes simply the cosθ of the angle between the

two document vectors, a standard IR similarity measure. Scaling the term and label

dimensions sets up a new kernel function given by

K(di, dj) = f ·KT (di, dj) + (1− f) ·KL(di, dj) (5.1)

where KT is the usual dot product kernel between terms and KL is the kernel between

the label dimensions. The tunable parameter f is chosen through cross-validation on

a held out validation set. The label dimensions interact with each other independent
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of the text dimensions in the way this kernel is set up. Just scaling the document

vector suitably is sufficient to use this kernel and no change in code is needed.

Documents in D thus get a new vector representation with |T | + |C| columns

where |T | is the number of term features. They also have a supervised set of labels.

These are now used to train a new SVM ensemble S(1). We call this method SVMs

with heterogeneous feature kernels (denoted SVM-HF). The complete pseudo-code is

shown in Figure 5.1. This approach is directly related to our previous work on Cross-

Training [SCG03] detailed in Section 3.3.1 where label mappings between two different

taxonomies help in building better classification models for each of the taxonomies.

1: Input: Labeled training set of documents T

2: Output: SVM models with class correlation information
3: Represent each document d ∈ T as a vector d with ‖d‖ = 1
4: Build one-vs-others SVM classifier S(0) using text tokens only
5: for each document d ∈ T do
6: Apply S(0) to d, getting a vector γC(d) of |C| scores
7: Concatenate vectors d and γC(d) into a single vector scaled as per Equation (5.1)
8: Maintain unit L2 norm: ‖d‖ = 1
9: Add this vector into the training set of S(1)

10: end for
11: Induce a new one-vs-rest SVM classifier S(1) for all d ∈ T

Figure 5.1: SVMs with heterogeneous feature kernels

Testing: During application, all test documents are classified using S(0). For

each document, the transformed scores are appended in the |C| new columns with

appropriate scaling. These document are then submitted to S(1) to obtain the final

predicted set of labels.
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5.3 Improving the margin of SVMs

In multi-labeled classification tasks, the second opportunity for improvement is

provided by tuning the margins of SVMs to account for incomplete label-sets attached

with documents. As we saw in Section 5.1, the Reuters-21578 dataset’s wheat−grain

and fuel − oil like class sets are overlapping and inspection reveals that label-sets

for documents seem incomplete. Discriminative methods work best when classes are

disjoint. Owing to such incomplete label-sets with overlapping concepts, the docu-

ments are best treated as ‘partially labeled’. Therefore, it is likely that the ‘others’

set includes instances that truly belong to the positive class also. We propose two

mechanisms of removing these examples from the large negative set which are very

similar to the positive set. The first method does this at the document level, the

second at the class level.

5.3.1 Removing a band of points around the hyperplane

The presence of very similar negative training instances on the others side for

each classifier in an SVM ensemble hampers the margin, and re-orients the separating

hyperplanes differently than if these points were absent. If we remove these points

which are very close to the resultant hyperplane, we can train a better hyperplane

with a wider margin. The algorithm to do this consists of two iterations:

1. In the first iteration, train the basic SVM ensemble.

2. For each SVM trained, remove those negative training instances which are within

a threshold distance (band) from the learned hyperplane. Re-train the ensemble.

We call this method the band-removal method (denoted BandSVM). When se-

lecting this band, we have to be careful not to remove instances that are crucial in

defining the boundary of the others class. We use a held-out validation dataset to
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choose the band size. An appropriate band-size tries to achieve the fine balance be-

tween large-margin separation, achieved by removing highly related documents which

most likely should have been assigned the +ve label, and over-generalization, achieved

by removing points truly belonging to the negative class.

5.3.2 Confusion matrix based “others” pruning

Another way of countering very similar positive and negative instances, is to com-

pletely remove all training instances of ‘confusing’ classes. Confusing classes are de-

tected using a confusion matrix quickly learned over held out validation data using

any moderately accurate yet fast classifier like naive Bayes [GSC02]. The confusion

matrix for a n-class problem is n-by-n matrix M , where the ijth entry, Mij, gives the

percentage of documents of class i which were misclassified as class j. If Mij is above

a threshold β, we prune away all confusing classes (like j) from the ‘others’ side of

i when constructing a i-vs-others classifier. If the parameter β is very small a lot of

classes will be excluded from the others set. If it is too large, none of the classes may

be excluded resulting in the original ensemble. β is chosen by cross-validation. This

method is called the confusion-matrix based pruning method (denoted ConfMat). This

two-step method is specified as:

1. Obtain a confusion matrix M over the original learning problem using any fast,

moderately accurate classifier. Select a threshold β by cross-validation.

2. Construct a one-vs-others SVM ensemble. For each class i, leave out the entire

class j from the ‘others’ set if Mij > β.

ConfMat is faster to train than BandSVM, relying on a confusion matrix given by

a fast NB classifier, and requires only one SVM ensemble to be trained. The user’s
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domain knowledge about relationships between classes (e.g. hierarchies of classes) can

be easily incorporated in ConfMat.

5.4 Experiments

In this section we present the results of our experiments with the various dis-

criminative methods for multi-labeled classification. We used the Reuters-21578 and

Patents datasets described in Section 2.4.2 and Section 2.4.2 for our experiments. The

datasets were pre-processed by doing stemming, stop-word removal and we only con-

sidered tokens which occurred in more than one document at least once. The top 1000

features by mutual information were retained in both datasets. We used a subset of

30 most populated classes of Reuters-21578 for testing statistical significance but also

used all the 135 classes for general experiments. Similarly we used the F hierarchy for

significance tests for Patents and also used all 114 classes in other experiments. The

significance tests were done by 10 random train-test splits on the specified label-sets,

repeating the experiments, and performing the paired t-test on the results.

All evaluation measures used in our experiments are slightly different but in the

same spirit as those outlined in Section 2.4.1. The measures we use are on a per

instance basis and the aggregate value is an average over all instances. For each

document d, let L be the true set of labels, S be the predicted set of labels. Accuracy

is measured by the Hamming score which symmetrically measures how close L is to

S. Thus, Accuracy(d) = |L ∩ S|/|L ∪ S|. The standard IR measures of Precision (P),

Recall (R) and F1 are defined in this setting as P (d) = |L ∩ S|/|S|, R(d) = |L ∩ S|/|L|,

and F1(d) = 2P (d)R(d)/(P (d) + R(d)).

All experiments were performed on a 2-processor 1.3GHz P3 machine with 2GB

RAM, running Debian Linux. Rainbow 1 was used for feature and text processing

1http://www.cs.cmu.edu/~mccallum/bow/
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and SVMlight 2 was used for all SVM experiments. In Section 5.4.1 we look at

the overall accuracy and F1 comparisons of all methods. In Section 5.4.2 we inspect

some results that highlight correlation between classes within the label-set discovered

by SVM-HF. In Section 5.4.3 we look at the different methods with respect to the

number of labels predicted for documents compared to the true number of labels and

note that our proposed methods performed much better than the baseline.

5.4.1 Overall comparison

Table 5.1 and Table 5.2 show the overall comparison of the various methods on the

Reuters-21578 and Patents datasets. Table 5.1 shows comparison on all 135 classes

of Reuters-21578 as well as results of averaging over 10 random train/test splits on a

subset of 30 classes. Table 5.2 shows the comparison for all 114 subclasses of Patents

and average over 10 random train/test splits on the F class sub-hierarchy. For both

datasets we see that SVM-HF has the best overall accuracy. SVM has the best preci-

sion and ConfMat has the best recall. We also observe that BandSVM and SVM-HF

are very comparable for all measures.

Table 5.1: The Reuters-21578 dataset

30 class subset All 135 classes

Method Accuracy Precision Recall F1 Accuracy Precision Recall F1

SVM 82.02 92.65 82.47 87.26 81.26 92.41 82.45 87.15

ConfMat 76.16 81.64 88.00 84.7 80.92 87 88.37 87.68

BandSVM 83.18 89.87 87.41 88.63 81.73 88.44 87.54 87.99

SVM-HF 84.25 91.56 86.94 89.19 82 88.66 87.27 87.96

We performed a directional t–test of statistical significance between the SVM and

SVM-HF methods for the 30 class subset and the F sub-hierarchy. The accuracy

2http://svmlight.joachims.org
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Table 5.2: The Patents dataset

F class sub-hierarchy All 114 subclasses

Method Accuracy Precision Recall F1 Accuracy Precision Recall F1

SVM 66.65 73.65 67.57 70.48 42.47 56.76 43.37 49.16

ConfMat 66.62 69.70 70.63 70.16 41.67 53.40 51.65 52.51

BandSVM 67.30 72.09 68.90 70.45 43.30 55.24 48.61 51.70

SVM-HF 68.86 72.06 69.78 70.90 44.41 55.35 49.84 52.45

and F1 scores of SVM-HF were 2% better than SVM, being a small but significant

difference at 95% level of significance.

5.4.2 Interpreting co-efficients

Inspection of the components of w along the label dimensions derived by SVM-HF

reveals interesting insights into various kinds of mappings between labels. The signed

components of w along the label dimensions roughly represent the amount of positive

or negative influence the dimension has in classifying documents. As an example for

the Reuters-21578 dataset, the label dimension for grain (+8.13) is highly indicative

of the class grain. Wheat (+1.08) also has a high positive component for grain, while

money-fx (−0.98) and sugar (−1.51) have relatively high negative components. This

indicates that a document classified as wheat is a positive indicator of the class grain;

and a document classified as sugar or money-fx is a negative indicator of the class

grain.

5.4.3 Comparing number of labels

Table 5.3 shows the size of the true set of labels L, and the predicted set S. We

fix |S| to be 1, 2, 3 for each |L| = 1, 2, 3. For instance, for |L| = 1, |S| = 1 for 99% of

the instances for the SVM method, and only 1% of the instances are assigned |S| = 2.
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For singleton labels, SVM is precise and admits only one label whereas other methods

admit a few extra labels.

Table 5.3: Percentage of instances with various sizes of S for L=1,2,3 with 30 classes

of Reuters. Here, 68% of all test instances in the dataset had L=1; 22% had L=2; 8%

had L=3; others had L greater than 3.

L=1 L=2 L=3

Corresponding S= 1 2 3 1 2 3 1 2 3

SVM 0.99 0.01 0 0.5 0.5 0 0.52 0.35 0.13

ConfMat 0.83 0.14 0.03 0.27 0.63 0.1 0.17 0.3 0.48

BandSVM 0.89 0.09 0.01 0.32 0.64 0.03 0.22 0.3 0.43

SVM-HF 0.94 0.06 0.01 0.34 0.63 0.02 0.3 0.26 0.39

When |L| = 2, 3, we see that SVM still tends to give lesser number of predictions,

often just one in half the cases. Compared to SVM, the other methods have a high

percentage of instances in the |L| = |S| column; around 63% for two labels and around

40% for three labels. One reason for this is the way one-vs-others is resolved. All

negative scores in one-vs-others are resolved by choosing the least negative score and

treating this as positive. This forces the prediction set size to be 1 and the semantics of

least negative is unclear. The percentages of documents assigned all negative scores by

SVM is 18% for 30 classes of Reuters-21578, while ConfMat, BandSVM, and SVM-HF

assign all negative scores to only 4.94%, 6.24%, and 10% of documents respectively.

5.5 Related work

There has been very limited research in multi-labeled classification compared to

other areas of text classification. This is a harder problem than vanilla text classification

because of the added problem of estimating the number of classes that documents be-

long to. Lack of many benchmark datasets has also restricted attention though in
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the past few years many multi-labeled datasets have become available. Most notable

among related work in this area is the category ranking work [CS03, EW01] and at-

tempts at using generative models for multi-labeled classification [McC99, Hof99].

Cramer et al. [CS03] propose a one-vs-others like family on on-line topic ranking

algorithms. Ranking is given by wci
· x where the model for each class wci

is learned

similar to perceptrons, with an update of wci
in each iteration, depending on how

imperfect ranking is compared to the true set of labels. Another kernel method for

multi-labeled classification tested on a gene dataset is given by Elisseeff et al. [EW01].

They propose a SVM like formulation giving a ranking function along with a set size

predictor. Both these methods are topic ranking methods, trying to improve the rank-

ing of all topics. We ignore ranking of irrelevant labels and try to improve the quality

of SVM models for automatically predicting labels. The ideas of exploiting correla-

tion between related classes and improving the margin for multi-label classification

are unique to our work.

Positive Example Based Learning–PEBL [YHC02] is a semi-supervise learning

method similar to BandSVM. It also uses the idea of removing selected negative in-

stances. A disjunctive rule is learned on features of strongly positive instances. SVMs

are iteratively trained to refine the positive class by selectively removing negative in-

stances. The goal in PEBL is to learn from a small positive and a large unlabeled

pool of examples which is different from multi-labeled classification.

Multi-labeled classification has also been attempted using generative models, al-

though discriminative methods are known to be more accurate. McCallum [McC99]

gives a generative model where each document is probabilistically generated by all top-

ics represented as a mixture model trained using EM. The class sets which can generate

each document are exponential in number and a few heuristics are required to effi-

ciently search only a subset of the class space. The Aspect model [Hof99] is another
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generative model which can be naturally employed for multi-labeled classification,

though no current work exists. Documents are probabilistically generated by a set of

topics and words in each document are generated by members of this topic set. This

model is however used for unsupervised clustering and not for supervised classification.

Recently Zhu et al. [ZJXG05] have also worked on exploiting correlation between

classes using maximum entropy classification. Their motivation is similar to that of

our SVM-HF method and they have shown slightly better results on two benchmark

datasets. This work confirms the idea of exploiting correlation between related classes

for better multi-class.

5.6 Discussion

Multi-labeled classification is more natural than assigning documents to just one

class in real-world settings. However the success of various methods in the multi-

labeled classification setting is limited because of the additional overhead of assigning

a correct number of labels because documents potentially belong to all classes in the

label-set. Semantically it is further unclear whether the noise/junk class should be

treated as a class in itself for modeling purposes.

In our experience at inspecting standard benchmark datasets like Reuters-21578

and the various web datasets, we feel that the given labels to documents are in-

complete. There are many cases in the Reuters-21578 dataset where documents are

assigned wheat but not grain. The latter class intuitively seems to subsume the former

but this is not part of the specification of the label-set. In such cases where the se-

mantics of classes is unclear we have seen lots of cases where documents seem to have

incomplete label-sets. In such a case we feel discriminative multi-labeled classification

methods can achieve higher accuracy levels if the training data is cleaner and complete.
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5.6.1 Recent approaches using graphical models

We have been recently involved in some related work where we have attempted

solutions to multi-labeled classification using graphical models [Chi05]. We want to

exploit the correlation between class labels. As Graphical Models [JGJS99] provide a

natural formalism to handle correlated random variables, we model the joint distribu-

tion of the class labels for a given document using a graphical model where the nodes

are binary random variables corresponding to each class.

Let N be the total number of classes and ~X = {X1, X2, . . . , XN} be continuous

random variables corresponding to the output scores of one-vs-others SVMs for each

class. Let ~Y = {Y1, Y2, . . . , YN} be binary random variables with states 1/0 indicating

whether the class is related to the current document or not. A specific assignment

of values to each of the above random variables will be denoted in small case like

~x = {x1, x2, . . . , xN} and ~y = {y1, y2, . . . , yN}.

For a given document, given the SVM ensemble output scores ~X, the task is to

predict the most likely assignment of values to the binary random variables ~Y . We

learn a conditional random field (CRF), which is a conditional model Pr(~Y | ~X), for

the above task. The logistic score of the current label given the SVM output score

vector was used as a state feature. The various binary combinations of adjacent true

class labels were used as edge features.

The structure of the above CRF represents the various statistical dependencies

that exist among the class labels. Structure learning for undirected graphical models

is known to be hard. However, it is relatively easy to learn the structure of directed

graphical models like Bayesian Networks. Hence, we resort to learning a directed

graphical model and later moralizing it into an undirected model. We use WinMine, a

tool developed by Microsoft to learn the structure of the directed model from the class
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labels of training instances. Since the above graphical model could have loops, we use

Loopy Belief Propagation (LBP) for inferencing. The perceptron algorithm was used

to train the parameters of the model. The model was tested on the Reuters-21578

dataset with 10, 18, and 90 classes and results show a significant improvement over

baseline SVM predictions [Chi05].

On a related note, more recently Ghamrawi et al. [GM05] proposed the use of

graphical models for multi-labeled text classification. They use a factor model on the

terms and class labels to learn the class co-occurrence relationships. There are some

key differences with our approach. Since SVMs are known to be robust classifiers in

the term space, we do not use the terms in the document directly. Instead, we use the

SVM ensemble output scores to learn the inter-class dependencies.

5.7 Summary

We have presented methods for discriminative multi-labeled classification. We have

presented a new method (SVM-HF) for exploiting co-occurrence of classes in label sets

of documents using iterative SVMs and a general kernel function for heterogeneous

features. We have also presented methods for improving the margin quality of SVMs

(BandSVM and ConfMat). We see that SVM-HF performs 2% better in terms of

accuracy and F1 than the basic SVM method; a small but statistically significant

difference. We also note that SVM-HF and BandSVM are very comparable in their

results, being better than ConfMat and SVM. ConfMat has the best recall, giving the

largest size of the predicted set; this could help a human labeler in the data creation

process by suggesting a set of closely related labels.

In future work, we would like to theoretically understand the reasons for accuracy

improvement in SVM-HF given that there is no extra information beyond terms and
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linear combinations of terms. Why should the learner pay attention to these features

if all the information is already present in the pure text features? We would also like

to explore using these methods in other application domains.



Chapter 6

Bootstrapping text classification

systems

6.1 Introduction

In the previous chapters we looked at three relationships between classes, namely

mappings, confusion, and overlap. We proposed methods to exploit or overcome these

to help in building better applications. We now turn our attention to another im-

portant aspect of text classification systems, that of development of classifiers and

label-sets in typical new application settings. We focus on the problems of bootstrap-

ping feature sets, document sets, and label-sets while building new text classification

systems.

6.1.1 Problem setting

When building new text classification systems, there is initially very limited train-

ing data available. The set of classes is usually undefined and users may rely on

unsupervised discovery techniques like clustering and even latent semantic indexing

to group documents into related sets. Once some such grouping has been done, these

groups of documents may be inspected to reveal themes of commonality and names

103
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of classes and classification criteria may be deduced. It is quite standard to pro-

ceed cautiously and assign very few training documents to each of these new classes.

Classification algorithms are expected to operate on this training set and we need to

help the system bootstrap as fast as possible and reach respectable performance levels.

In such settings, and even in the case when the label-set is specified upfront,

there is a constant need to revisit the coverage of the label-set at hand. The label-

set represents the breadth of knowledge the classification system is aware about and

hence defines the coverage or scope of topics. New classes often get introduced into

the system that were not present earlier and these classes need to be folded in. There

is also very limited training data in terms of labeled documents when building new

classifiers. Our focus in this chapter is to study the bootstrapping of classifiers at

three different levels. We look at the problem of temporally evolving label-sets by

tracking addition of new classes. Our approach is to present candidate new classes to

the user whose judgment decides whether the class is to be folded in or not. We also

look at bootstrapping classes or concepts by human feedback on document and term

level labeling interactions.

6.1.2 Outline

We look at the problem setting in detail in Section 6.1.1. This chapter is organised

in two independent halves. First, in Section 6.2 we look at the evolving label-set

problem of discovering new classes in unlabeled data. Second, in Section 6.3 we

present active learning based mining techniques for incorporating human feedback via

document and term labeling to bootstrap the accuracy of classifiers.

Tracking temporal evolution of label-sets in text classification systems:

In the first part of this chapter in Section 6.2 we develop the notion of coverage of

a label-set. We propose to use the extent to which training data covers unlabeled
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data as a method of tracking changing distributions in unlabeled data. In particular

we present methods to detect new classes (evolving label-sets) in unlabeled data that

were not present in training data. This is another important problem that needs to

be handled when building new classifiers for text based systems from scratch.

We introduce the problem and identify three main challenges in Section 6.2.1. We

propose the novel idea of abstractions for document representation in Section 6.2.2,

propose generative and discriminative methods for selecting new class documents in

Section 6.2.3 and Section 6.2.4 respectively. Section 6.2.5 contains heuristics for au-

tomatically triggering on detection of new classes. We present experiments in Sec-

tion 6.2.6, related work in Section 6.2.7, a discussion in Section 6.2.8, and we sum-

marise in Section 6.2.9.

Leveraging human feedback by document and term labeling conversa-

tions: In the latter half of this chapter, we look at active-learning based techniques

to incorporate human knowledge to guide classifier construction. We wish to extend

the active-learning paradigm so that we can process many classes and documents effi-

ciently while exerting little cognitive load on the expert user. We also look at feature

engineering steps that can be incorporated at this stage. We explain these solutions

using SVMs as a representative linear-additive model.

We explain the linear-additive classification model used for this part in Section 6.3.1.

We look at active learning on documents in multi-class multi-labeled settings in Sec-

tion 6.3.2 and in Section 6.3.3 we introduce the new notion of active learning on terms

to bootstrap classifiers when nearly no training data is available. We present some

experimental results in Section 6.3.4 and discuss related work in Section 6.3.5. We

discuss other aspects of the problem in Section 6.3.6 and summarise in Section 6.3.7.
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6.2 Temporal evolution of label-sets

In the previous chapters we have looked at direct relationships between classes;

mappings, confusion, and overlap. In the present chapter we look at an indirect

relationship between classes. We develop the notion of coverage of a label-set. We

propose to use the extent to which training data covers unlabeled data as a method of

tracking changing distributions in unlabeled data. In particular we present methods

to detect new classes (thus evolving label-sets) in unlabeled data that were not present

in training data.

Text classification systems are typically trained on a corpus of training data. The

learned models are applied to the incoming stream of unlabeled data for label assign-

ment. An inherent assumption in text classification systems is that training data and

unlabeled deployment data follow similar distributions and belong to the same set of

underlying classes or concepts. An important practical challenge is that this assump-

tion does not hold in real-life applications. In this chapter, we focus on the problem of

new classes being introduced into the system; those that were not defined or relevant

during training.

Example settings: Such new classes need to be detected from the unlabeled data

and folded into the system. We call this the evolving label-set problem. Such

a scenario is common in directory systems like Dmoz that manually classify ever-

changing web-pages. For example, a directory of scientific disciplines would need to

add “bio-informatics” as it emerged as a new discipline, or add an industry type

“cell-phones” when they started becoming popular.

Another example is in the news domain where new kinds of news stories about

recent events need to be detected and classified. This example is well studied and
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called novelty detection in the topic detection and tracking (TDT) track at the TREC 1

conferences. The novelty detection task aims for on-line clustering of news stories; its

goal is to tag novel news stories as interesting and spawn new events for these stories.

On the other hand, the evolving label-set problem in a classification setting requires

that new classes be carefully spawned only if they fit into the existing label-set. We

review some of the novelty detection work and point out differences to the evolving

label-set problem in Section 6.2.7.

Consider a classification problem with n classes, where the classes are documents

about certain countries (India, US, UK, . . .). Over time, a new country’s documents

(say Australia) are introduced into the system. The evolving label-set problem is to

detect such (one or more) new classes, propose a cohesive set of documents for training

the new classes, get user’s validation about these fitting in with the label-set, and fold

these new classes into the classification system. Such problems occur especially when

a nascent classification system is built from scratch, the entire set of labels is not

known beforehand, and the user’s understanding of the label-set evolves over time.

Contributions: We present algorithms for identifying new classes in both discrim-

inative and generative settings. We introduce the notion of abstractions so as to

capture the importance of terms not encountered during training, and also to provide

a representation that more intuitively reveals the classification criteria to the user. We

perform experiments on three very different types of real-life taxonomies and show that

our methods achieve 60–90% precision of discovering unlabeled documents comprising

a new class. Our proposed methods for automatically detecting presence of a new

class also shows low error rates of about 15%. We also make the surprising discovery

that while 2-class discriminative methods like SVM are more accurate than generative

1http://trec.nist.gov
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ones, as far as the discovery of new classes is concerned they fare poorly with respect to

state-of-the-art generative methods. We attribute this to the notion of model support

inherent to the generative models we used.

An important assumption in the rest of this chapter is that our methods detect

only one new class in unlabeled data at a time. If more than one class is introduced

in the unlabeled data, for a small number of such additions, we have found successive

detection of one class at a time to work well. If many new classes are expected in

the unlabeled data, we feel this is outside our problem definition. It is not clear that

classification is the best tool to use when training and unlabeled data have drastically

different distributions. Such a setting would fall under novelty detection in news

stories where new concepts are continuously being introduced in the system.

Problem setting: We envision a scenario where a separate module for new class de-

tection continuously monitors unlabeled documents as they arrive into a text classification

system for label assignment. The system diagram is shown in Figure 6.1. When the

module called Class-Detector gathers enough evidence of an emerging new class, it

sends a trigger to the administrating user. Alternately, the user could periodically

query the Class-Detector for the presence of a new class. The Class-Detector then

presents to the user a ranked list of documents that could comprise a new class. The

user can then choose to add a new class to the classification system with an initial

labeled set filtered from this ranked list.

Our methods for tackling the evolving label-set problem do not interfere with the

working of the main classifier. The main classifier can be any high-performance well-

tuned algorithm; a popular choice being Support Vector Machines (SVMs) [Joa98].

As we will see later in Section 6.2.6 the underlying learning model that works best

for the detecting new classes can be very different from the optimal main classifier for
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label assignment.

Figure 6.1: System overview

6.2.1 Challenges

We expect to find a new class when there are a significant number of unlabeled doc-

uments that do not fit the existing class structure and which are themselves coherent

enough to be grouped into a class. Converting this intuition into a robust procedure

involves attacking three main problems identified next.

Dealing with unseen tokens

One of the important issues in the evolving label-set problem is dealing with

unseen features. It is likely that documents of new classes will contain terms that

have not been seen during training, and not all of these are important for classification.

Further, even normal unlabeled documents contain new terms in abundance, thereby

eliminating the possibility of depending on frequency of new terms to detect new
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classes. We look at this problem in detail in Section 6.2.2 where we introduce the

notion of abstractions.

Finding representative documents

The document selector that picks a ranked list of documents comprising a

possible new class. Separating out documents forming a possible new class from

mis-classified documents of existing classes on the basis of being “misfits” in the

classification model, is extremely challenging, particularly in the presence of multi-

labeled documents. If the selected documents contains several of these mis-classified

documents (say more than 50%), the user may get confused about the nature and scope

of the proposed new class. In fact, for state-of-the-art one-vs-others SVM ensembles,

we have observed that as many as 30% of the unlabeled documents are rejected by

all the binary classifiers, making them hard to separate from valid new class docu-

ments. We therefore explore generative models to capture the degree of fit of unlabeled

documents. We further discuss the problem in Section 6.2.1.

Any new class discovered by our methods needs to f it into the label-set. In the

above example, the Australia class will be a good fit given the user’s understanding

of the country-wise nature of the label-set. The challenge is to extract a cohesive set

of unlabeled documents to train the new Australia class. This new class should have

good training documents such that class-specific parameter estimates are robust and

do not spoil the existing multi-class setup. In a bad case it is possible that a wrong

new class spoils parameters of the original set of classes.

We employ two techniques to extract a cohesive set of new class documents from

the unlabeled data in Section 6.2.3. One technique is to perform Hierarchical Ag-

glomerative Clustering (HAC) on some representation of the training and unlabeled

documents. The unlabeled documents of the new class should be sufficiently different
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from existing training documents. Another technique we use is to iteratively train

SVMs with documents which could not be learned and properly classified in the ex-

isting SVM ensemble and hence could belong to a new class.

Automatically triggering detection of a new class

Our system can work in either of two modes. In the first case, the user maintaining

the text classification system can periodically probe the system about the nature of

unlabeled documents, the system analyzes the unlabeled documents, and proposes a

new class from the unlabeled data in hand. Given such a candidate proposed class, it

is possible for the user to evaluate whether it fits in the given label-set or not.

The second case is a far more challenging problem where the system automati-

cally detects the fact that a new class is present in unlabeled data. Every document

which is mis-classified by the existing classifier potentially defines a new class. Since

the existing model did not learn to classify such a document, it is possible that the

document contains a new set of words not seen before or combines existing features

and yet charts out a completely new concept. More practically, such documents are

usually noisy or multi-labeled and are hence mis-classified. The challenge is to collect

a group of such documents which form a cohesive set. If this set has enough consis-

tent divergence from other unlabeled documents, the system should be able to trigger

detection of a new class. In Section 6.2.5, we propose some methods for evaluating

candidate new classes and propose a method to automatically trigger new classes as

they occur in the unlabeled data. The new class trigger algorithm that decides if

there is enough consistent divergence in the unlabeled set to define a new class. We

look at this problem closely in Section 6.2.1.
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6.2.2 Abstractions for dealing with unseen tokens

The main challenge in the evolving label-set problem is that of dealing with new

terms in unlabeled data that were not previously seen during training. These new

terms will usually define the scope and coverage of the newly introduced classes.

Standard feature selection metrics like mutual information, information gain and other

statistical measures, rank features in the training set according to their usefulness in

classification. However, there is no mechanism except smoothing by which features

not present in the training data can be accounted for. We want to collect all new

tokens which together help in defining a new class.

In a supervised setting, the importance of terms is established either explicitly

using statistical metrics like information gain, or implicitly, in the classifier via term

weights (as in SVMs). Such metrics that depend on labeled data are not applicable

here. We depend on indirect methods to establish term importance via a notion of term

abstractions that assigns importance to a family of terms together. Abstractions in-

dicate various properties of the term based on the way it is used in the documents.

Examples of abstractions are: Named-Entity (NE) tags, part-of-speech (POS) tags,

formatting features, visual clues in HTML documents, and match with external dic-

tionaries or keyword ontologies. For example, a classification system based on regions

would assign high importance to location NE tags. Additionally, abstractions help a

user better interpret the criteria used for defining new classes. Abstractions can be

clubbed together to form abstraction sets. The user can choose a small number of can-

didate abstraction sets for a label-set by inspection, domain knowledge, or through

validation experiments in an off-line training phase. Some examples will make the

notion of abstractions clear.

Consider an example scenario where the evolving label-set problem occurs. In the
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text classification system in Section 6.2, documents are classified according to countries

(India, USA, UK, . . .). Over time, documents pertaining to Australia, are introduced

in the system. These documents will contain words like Sydney and Melbourne which

will either not be present in the training data, or their presence will be randomly

spread out across all classes. These documents will be mis-classified as the classifier

has no existing notion of the class Australia.

Intuitively, in this example, we know that looking at place names is a good indicator

of the class of the document. Mumbai very likely implies India, Washington implies

USA, and Sydney should imply Australia. Groupings of tokens based on some external

knowledge, like the location Named-Entity (NE) tag here, are called abstractions.

Abstractions group features under some human-understandable concept.

In the above example, the location abstraction captures the central theme of the

label-set as understood by a human expert. An interesting representation of docu-

ments is to look at one (or more) abstraction at a time and ignore all other tokens.

We find this helpful in dealing with the evolving label-set problem. We can work with

a rich set of abstractions. NE tags like location, person name, organization name, have

been found useful in novelty detection [YZCJ02]. Text mining for authorship attribu-

tion and gender classification has found part of speech (POS) n-grams to be valuable.

The IR and web communities have found visual clues and properties in HTML pages

useful; these include words belonging to titles, table headers and hyper-links, which

are treated differently from normal text. Custom dictionaries and keyword ontologies

are useful in domain-specific text mining tasks. NE tags, POS tags, visual properties,

and topical dictionaries are all examples of abstractions. Abstractions can be clubbed

together to form abstraction sets. The user can choose candidate abstraction sets for a

label-set by inspection and domain knowledge. In the above example, we would choose

the location, person, and organization NE tags and some combinations of these.
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Example: We highlight the importance of abstractions in understanding a label-set

with an example in Table 6.1. With the full vocabulary, for three classes, we show the

four most indicative features used in classification. We also show indicative features

when only the organization name NE tag is seen for the documents.

Table 6.1: Indicative features for a label-set

Full vocab

bank,issue,warrant,fee
oil,crude,million,refinery

compuserve,service,subscribe,cost

Organization names

Commonwealth Bank of Australia, Commerzbank, Central Bank, Fleet Financial Group
Gulf Oil, Chinese Petroleum Corp, Esso Australia Ltd, Natural Gas Corporation

Europe Online, Compuserve, First Data Corp, AOL

The full vocabulary makes it hard for us to judge what the classes in the label-set

are though we can estimate that the classes are broadly about commerce, oil, and

computers. However, looking at only the organization names (the organization name

abstraction), we immediately understand that the label-set is about industry types and

the classes pertain to a kind of banking, oil companies, and computer data companies

respectively. Indeed, this label-set is taken from the Industries dataset described

in Section 6.2.6. If new classes are discovered in unlabeled data based on the full

vocabulary, it is not clear that the user will be able to judge the nature or constitution

of the proposed class. On the other hand, the organization name abstraction will

definitely help the user in understanding and identifying a new industry type.
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6.2.3 Generative methods for selecting new class candidates

In this section we propose generative and discriminative methods for selecting un-

labeled documents for a likely new class. First, we present an algorithm for generative

classifiers based on the notion of support. Following this, we present algorithms for

discriminative classifiers based on the notion of classification confidence.

Generative methods

Generative models for text such as naive Bayes, Latent Dirichlet Allocation (LDA)

[BNJ02], the Aspect model [Hof99], and BayesANIL [RCKB05] model the process of

generation of documents and document features (e.g. words) from classes. The sim-

plest generative model is naive Bayes outlined in Section 2.3.1. It is a very fast and

moderately accurate classifier used for text classification tasks. Due to its indepen-

dence assumptions it is notorious for giving very highly skewed estimates of Pr(c|d);

either very close to 0 or very close to 1. However the rankings it gives to these esti-

mates over all classes are known to be very good and this classifier is very widely used

in many applications where accuracy is not the sole aim.

As we will see later in this section we develop methods which rely on joint probabil-

ity estimates Pr(c, d) which are output by the new generative model BayesANIL [RCKB05].

We could try and use naive Bayes, LDA, or the aspect model in what follows; such

experimentation is left for future work. BayesANIL is a also a Bayesian model that as-

sumes conditional independence of words (features) from classes, given documents. It

has been shown to be capable of estimating uncertainties associated with the labeling

process. Given a corpus of documents d ∈ D and some of the documents labeled with

class labels c ∈ C, the model estimates the joint distribution Pr(c, d) of training docu-

ments d and class labels c by using a generalization of the EM algorithm. The Pr(c, d)

estimate from BayesANIL can be interpreted as a measure of support for membership
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of document d in class c. The marginalized probability Pr(d) =
∑
c∈C

Pr(c, d) can

be interpreted as a measure of support of how well document d fits into the existing

label-set defined by classes C = {c1, c2...cn}.

BayesANIL provides for folding in feature evidence from unlabeled documents,

which is especially important, given that some features are often poorly represented

in the labeled set. This folding-in is enabled by setting the parameter λ in BayesANIL

to a non-zero value. In our experiments, we used λ = 0.001. We chose BayesANIL

over other generative models, because in empirical experiments, the estimates output

were indicative of support for documents from the model even in the presence of noisy,

approximate and incomplete labeling. We use this measure of support for the problem

of detecting documents pertaining to classes beyond those already provided; docu-

ments with low support for membership in any of the existing classes are determined

as documents of a candidate new class.

In general, we could make use of any generative model that (1) provides an estimate

of the joint distribution Pr(c, d) or the support for membership of each document in

each class and (2) provides for folding in feature evidence from unlabeled documents.

Folding in feature evidences from unlabeled documents is an important consideration

in the evolving label-set problem. We want to move beyond the usual smoothing

techniques for terms not seen in the training data. As we have pointed out, unseen

terms are central to determining whether a new class exists in the unlabeled data. We

now discuss algorithms for selecting documents that potentially form a new class.

SortPrD

A simple method of selecting documents belonging to a new class is to select

documents with the lowest Pr(d) values. We call this method SortPrD. This selection

tries to directly capture the lowest support documents; those with uniformly low
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support for being generated by any existing class. In practice we will see that in

addition to the new class documents, a lot of noisy and multi-labeled documents also

tend to get low model support.

PrDNewClass

Another method for suggesting new class documents is to seed an (n + 1)th class

by documents with the lowest Pr(d) values, re-train the generative model for (n + 1)

classes, and select unlabeled documents with the highest Pr(cn+1, d). We call this

method PrDNewClass. Since sorting based on Pr(d) is not perfect, it is likely that

documents selected by both these methods will include documents of existing classes

that were mis-classified either due to noise or since they were multi-labeled. Next, we

propose an algorithm that avoids this limitation.

GenSupp

For the original n-class label-set, we project all training and unlabeled documents

in an n-dimensional support space where the components for a document d along the

n dimensions are the n values of Pr(c, d). For training documents these Pr(c, d) values

could be pre-computed once during the training phase and stored. We then use a

hierarchical clustering (HAC) algorithm to group similar documents. We measure the

distance between any two documents d and d′ by the average KL-distance between

their Pr(c, d) and Pr(c, d′) n-dimensional scores. If dis and d′
is are the document

projections in the support space, then distance between d and d′ is given by:

dist(d, d′) =

n∑
k=1

dk ln(
dk

d′
k

) +
n∑

k=1

d′
k ln(

d′
k

dk

)

2
(6.1)

We tried single-link, complete-link, group-average, and Ward’s method[EHW86]

as cluster combination strategies, and found Ward’s method to work best. We grew
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the dendrogram till we had a large number (say 5n) of small clusters. Since Pr(d)

scores give the probability of generating the document from the model, we expect

the lowest Pr(d) values to be assigned to the new class or other noisy, multi-labeled

documents. We found this to be true empirically. To get tight sub-clusters from

these candidates, we chose clusters which had the lowest average value of Pr(d) of its

constituents. Figure 6.2 gives the complete GenSupp algorithm (for Generative model

method based on Support). We require each candidate cluster to have a minimum

number of unlabeled documents (say 5) to guard against outliers and to be able to

define a new class. We also require clusters to be pure where the fraction of unlabeled

documents is at least p%; this ensures that the new class lies in an area of the support

space where there are no (or few) training documents in the vicinity. We chose p as

20% in our experiments.

1: Input: Pr(c, d) scores for all training and unlabeled docs
2: Output: List of cohesive docs which possibly form a new class
3: PureClusterSet = {φ}
4: Project all training and unlabeled docs in n-dimensional space on Pr(ci, d) scores
5: Perform HAC using Ward’s method and average KL-distance from Equation (6.1)
6: Grow the dendrogram to 5n clusters
7: for all Clusters c do
8: If c has a minimum threshold number of unlabeled documents and has a minimum

fraction of unlabeled vs. labeled docs: add c toPureClusterSet

9: end for
10: Select one cluster c′ from PureClusterSet with the lowest average value of Pr(d) of

documents in it
11: Select fixed number of unlabeled documents from c′ sorted by lowest Pr(d) as output

Figure 6.2: GenSupp algorithm
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6.2.4 Discriminative methods for selecting new class candi-

dates

Discriminative classifiers like SVMs do not model the probability of generating a

document. Therefore we do not have equivalents of Pr(d) values for selecting candidate

documents for a new class. We assume a standard one-vs-others binary ensemble for

multi-class classification as outlined in Section 2.3.2 and design two algorithms that

rely on the “rejection” scores of the SVM ensemble.

NotaSVM – NOTA-based method

Let NOTA denote the set of unlabeled documents that are rejected by all the binary

SVMs (NOTA stands for None Of The Above classes). Some of these documents are

possibly self-similar, coherent and belong to a candidate new class; others may be

off-topic, noisy, or multi-labeled. Un-tuned SVMs are known to produce a significant

fraction (up to 30%) of such NOTA predictions for standard text benchmarks like

Reuters-21578. In one-vs-others, NOTA documents are resolved by assigning them to

the class giving the least negative score. We train a (n + 1)th binary SVM with the

NOTA set as the positive class and the known training data as the negative class. We

expect this SVM to prefer documents of the new class and accordingly select candidate

new class documents in decreasing order of their scores from the (n+1)th binary SVM.

We call this algorithm NotaSVM and note that it is similar in spirit to PrDNewClass

described in Section 6.2.3. The complete algorithm is given in Figure 6.3.

DisConf

We now propose a second algorithm along the lines of the GenSupp algorithm for

generative models. The DisConf algorithm (Discriminative method based on Confi-

dence) is designed to be the HAC-based discriminative counter-part of the GenSupp
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1: Input: n-class SVM one-vs-others ensemble
2: Output: Ranked list of unlabeled documents in order of belonging to new class

Require: n-class SVM one-vs-others ensemble
Require: n-class outputs for training and unlabeled data
3: Seed a (n + 1)th class with NOTA documents returned by the n-class ensemble
4: Re-train new (n + 1) class SVM one-vs-others ensemble and apply it to unlabeled

documents
5: Rank unlabeled documents classified positively by the (n + 1)th binary SVM by

distance from separator

Figure 6.3: NotaSVM algorithm

algorithm. In GenSupp we represented documents in the Pr(c, d) space. In this case,

we represent each document by the n-dimensional vector of projection scores from the

SVM ensemble. These scores indicate the prediction confidence of each classifier. The

distance between two documents is the Euclidean L2 distance metric.

An important difference between DisConf and GenSupp is that in DisConf we

cannot choose a tight cohesive cluster based on the lowest average value of a ranking

function like Pr(d). Instead, we need to apply a heuristic like choosing a cluster which

has the most negative average value of document projections. Remember that for a

document d, most of the prediction scores in its confidence vector will be negative.

As we will see in the experiments in Section 6.2.6, this is not a very good heuristic

for choosing candidate new classes. The algorithm is same as Figure 6.2, except for

two differences (1) each document is projected in the n-dimensional space of the SVM

ensemble’s output confidence scores instead of the Pr(ci, d) scores and (2) the L2

distance metric is used instead of KL-distance. The complete algorithm is shown in

Figure 6.4.
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1: Input: n-class SVM one-vs-others ensemble
2: Output: Cohesive cluster of documents as a candidate new class
3: Project all training and unlabeled docs in n-dimensional space on the SVM

ensemble’s output confidence scores
4: Perform HAC using Ward’s method and the L2 distance metric
5: Grow the dendrogram to 5n clusters
6: Choose clusters to have the smallest fraction (p%) of training documents and more

than (1− p%) of unlabeled documents
7: Choose the cluster with the most negative average value of it’s n-dimensional

document confidence scores
8: Select these documents as a candidate new class for user validation

Figure 6.4: DisConf algorithm

6.2.5 Automatically triggering new classes

In the previous section we saw how to select candidate documents for a new class

once a new class is detected or requested by the administrator. We now consider the

problem of detecting if indeed a new class exists in the unlabeled data. In general,

for a classifier there will be several unlabeled documents not classified in any of the

existing classes (NOTA documents in case of SVMs) or having very low probability of

being generated by the learned model (low Pr(dj) in BayesANIL). Typically, most of

them are due to noisy and mis-classified multi-labeled documents and automatically

triggering if there is a new class amongst them is a hard problem.

We approach the problem using BayesANIL’s notion of support using its Pr(c, d)

scores as follows. Let T = {T1, T2, . . . , Tn} be the training documents for the original

n-class label-set. We keep aside a set V = {V1, V2, . . . , Vn} of documents for mea-

surement. Another set U = {U1, U2, . . . , Un} are treated as unlabeled documents. We

introduce a fake class and change the original label-set by adding Tn+1 which is a

cohesive set of documents in Ui found by HAC as in GenSupp. Tn+1 is a fake class as

it’s documents are chosen from some Ui; for every such Ui, it’s corresponding class Ti
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already exists in the original label-set. We re-train this n+1 class document collection

using BayesANIL and find the value of two measures MV and MT .

MV =
∑
d∈V

Pr(cn+1, d) (6.2)

MT =
∑

d∈Tn+1

Pr(cn+1, d) (6.3)

MV measures the support for the validation set V from the newly added class,

and MT measures the support of the newly added class for itself. We perform this

experiment n times, every time adding documents of an existing class as a fake class.

This gives us n prototype values which we store as MVi and MTi, where i = 1 . . . n.

These MV and MT vectors capture the range of possible values when fake classes are

introduced into the label-set. Other similar measures are also possible; in particular

max
ci

∑
d∈Vci

Pr(cn+1, d)/|Vci
| should also work well.

We expect that if we really detect a new class from the unlabeled data, then

it’s corresponding MTn+1 value should be higher that all previous MTi’s. Since the

fake classes always had a corresponding class in T , these documents in Tn+1 share

the probability mass of d ∈ Ti for some Ti. A real new class will take away some

probability mass from all classes in T and MTn+1 > MTi ∀i = 1 . . . n. By a converse

argument we should get MVn+1 < MVi ∀i = 1 . . . n for a genuine (n+1)th class because

a genuine new class will not have any support for the n-class documents d ∈ V .

In Table 6.2 we added the class Australia to our running example of country-wise

classification. The original label-set without Australia contained the classes - USA,

UK, Canada, etc. Australia was hidden in the unlabeled data and had to be discovered.

We measured MVi and MTi by adding fake classes from USA, UK, Canada etc. The

last row shows values of MVn+1 and MTn+1 when the Australia class is really inserted
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Table 6.2: Discovering Australia

True class MVi MTi

CANA 0.00001526 0.000073

CHINA 0.00001521 0.000093

FRA 0.00001556 0.000077

GFR 0.00001530 0.000111

INDIA 0.00001548 0.000083

NETH 0.00001571 0.000075

RUSS 0.00001607 0.000062

SAFR 0.00001580 0.000071

UK 0.00001621 0.000043

USA 0.00001655 0.000093

AUSTR 0.00001509 0.000121

into the label-set using GenSupp. We see that MVn+1 and MTn+1 are respectively

minimum and maximum compared to the prototypes. The differences in values are

small, but the evaluation is on a constant V .

6.2.6 Experiments

In this section we present the results of our experimental evaluation for the evolving

label-set problem. We used the RCV1 dataset described in Section 2.4.2 for our

experiments. We selected the 20 most populous classes in each of the three taxonomies.

The 4 top-level topics classes CCAT, ECAT, MCAT, GCAT were not chosen since

these top-level classes in the hierarchy will not play a part in the evolving label-

set problem. As we are dealing with the evolving label-set problem, we used the

news stories of the first two days. The first day’s stories were taken as training data

and the second day’s stories were taken as unlabeled data for all our Class-Detector

experiments. This resulted in 4525 documents for regions, 11637 for topics, and 1571
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for industries. This selection gave us good varied datasets in terms of variety of classes

and sizes for the experiments.

We experimented with the full vocabulary (global G), the location (L), organization

(O), and person name (P) named-entity (NE) tags, and the singular noun (N) part-

of-speech (POS) tag. As mentioned in Section 6.2.2 we also used other NE and POS

tags as abstractions and also tried pairs of abstractions together as abstraction sets.

We report results with {G,P,L} for regions and {G,O,P} for topics and industries.

We found these to be the most appropriate and understandable abstractions for these

datasets. In practice, abstraction sets can be chosen from a variety of NE tags, POS

tags, visual properties, and custom dictionaries, depending on the problem domain

and user expertise.

We used a custom developed named-entity tagger [Ram05] for finding the P, L,

O abstractions. We note that this tagging was imperfect and noisy, yet our Class-

Detector methods worked well. We used SVMLight 2 for our experiments with SVMs,

and a Java implementation of BayesANIL [RCKB05]. For HAC we used Peter Klei-

weg’s clustering software 3 with our own implementation of KL-distance. All experi-

ments were run on a dual-processor Pentium Xeon server running Debian Linux with

2GB RAM.

We wanted to compare the various algorithms for document selection with each

other; GenSupp, SortPrD, PrDNewClass from Section 6.2.3, and DisConf, NotaSVM

from Section 6.2.4. Section 6.2.6 presents the precision results of these comparisons.

We also compared the baseline text classification accuracies of simple discriminative

and generative methods in Section 6.2.6. Finally we wanted to evaluate the MT and

MV measures for triggering new classes. Section 6.2.6 presents the false positive and

2http://svmlight.joachims.org
3http://www.let.rug.nl/~kleiweg/clustering/clustering.html
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false negative trigger rates.

Selecting new class documents

For each of the three datasets, we hid one class from the training data (first day

stories) but retained it in the unlabeled data (second day stories). The training data

thus had 19 classes and the unlabeled data had 20 classes. We checked if our algo-

rithms could detect this new class from the unlabeled data and suggest a good set of

documents comprising this class for user inspection. Our algorithms present a ranked

list of suggestions and we measure the precision of these suggestions. Precision is the

ratio of correctly suggested new-class documents to the total number of suggestions.

We used 20 suggestions for the reported experiments; results with varying number

of suggestions were similar. In our opinion, 20 is a good number for the user to be

able to judge the existence of a new class fitting into the existing label-set. The

average number of documents of the hidden class was always more than 20 for our

particular datasets. For each taxonomy, we report the average precision over all 20

class-detection experiments hiding each class one-by-one. We report results for the

following four methods:

• GenSupp, SortPrD, and PrDNewClass from Section 6.2.3,

• DisConf and NotaSVM from Section 6.2.4.

In Figures 6.5, 6.6, and 6.7 we show the precision values for the regions, topics and

industries datasets with three abstractions each. The precision values in each dataset

are averaged over 20 experiments. These graphs reveal interesting results about the

various methods and the role of abstractions.

First, when we compare the generative method GenSupp with the SortPrD base-

line, we find that GenSupp is either better or at par in seven out of nine dataset-
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Figure 6.5: Regions Figure 6.6: Topics

Figure 6.7: Industries

Figure 6.8: Selecting documents – Y -axis represents average precision

abstractions combinations. This illustrates that while the Pr(d) scores are valuable

for detecting new classes, they by itself do not suffice, and it is important to account

for coherency of the selected documents in defining a possible new class. The only ex-

ception is the topics taxonomy where we see that SortPrD outperforms or is marginally

better than GenSupp. The characteristic of this dataset is that it is hierarchical and

inherently multi-labeled. A document with a leaf label, is assigned all labels on the

path from the root to the leaf. Our choice of 20 classes in this dataset contained five

such parent-child pairs. Such multi-labeling paired the parent and child labels together

and the documents of the hidden classes were already present in the original label-set.

BayesANIL considered this noisy labeling and automatically assigned low Pr(d) scores
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to these documents leading to better performance of SortPrD over GenSupp.

We also note that PrDNewClass did worse than GenSupp and SortPrD in most

cases. PrDNewClass seeds a new (n+1)th class with documents sorted on Pr(d) scores

which are not very precise. This new class learned by BayesANIL contains a lot of

labeling noise and suggestions based on Pr(cn+1, d) end up with lower average precision

than other generative models.

Second, we find that abstractions do play an important role in some of the tax-

onomies. For the industries dataset, the O and P abstractions provide higher precision

than G which includes all terms. For regions, the person name abstraction P provides

slightly higher precision than G for the GenSupp method. We investigated why loca-

tion name L was not the best abstraction for this dataset. We found that the dataset

was highly skewed in class distribution. The USA class in the dataset accounted for

about half of the documents and these USA documents were also multi-labeled. Hence,

since common location names were already seen in the dataset, L did not prove to be

as good as P for this dataset.

Third, in all three cases the discriminative methods (DisConf and NotaSVM) per-

formed significantly worse than the generative methods. Even for the discriminative

methods we find that abstractions matter. GenSupp performs better than NotaSVM

but is not as good as any of the generative methods. When we inspected the results

of DisConf, we found that there were high-precision clusters present in the results of

the hierarchical clustering, but we were unable to pick those clusters for suggesting

documents. We discuss this in detail in Section 6.2.8. This was a somewhat surprising

finding of our experiments because discriminative methods like SVMs are popularly

believed to out-perform generative methods for text classification tasks. In the next

section, we show that this holds for our dataset too.
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Baseline accuracy

We evaluated the baseline classification performance of the two classifiers we used

in our studies. Figure 6.9 shows the micro-average F1 results for all the three datasets

(Reg for regions, Top for topics, and Ind for industries) for their chosen three abstrac-

tions.

Figure 6.9: Micro-average F1 for SVM and BayesANIL

SVM outperforms BayesANIL in classification accuracy for nearly all dataset and

abstraction combinations. It is interesting to see that in the case of the topics dataset,

TopO (topics and the Organisation NE tag) and TopP (topics and person name)

actually do better classification than TopG (topics and the full vocabulary). This

affirms our faith in the notion of abstractions – the correct abstractions capture most

of the information in the label-set.

Triggering new classes

We report experiments for detecting new classes according to the MT and MV

measures outlined in Section 6.2.5. For the regions dataset, we experimented with G

and L. For each of the 20 classes, we hid the class in the training data, introduced

it in the unlabeled data, and determined the fake-class prototype values of MT and

MV .
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Table 6.3: False Negative and False Positive rates. All numbers are out of 20 runs.

Lower numbers are better in both cases.

False Negatives False Positives

Reg Ind Reg Ind

G P G O G P G O

MT 8 3 14 7 5 3 8 5

MV 9 7 13 5 6 5 7 4

In Table 6.3, we report the number of false positives and false negative triggers

based on the MT and MV heuristics. We triggered new class detection 20 times and

we tabulate the error rates. We see that MT is a better measure than MV . MTn+1 is

higher than all fake MTi values more number of times because the fake classes have low

support for documents determined to belong to them but which actually come from

an existing class. MV performed comparatively poorly. We also see that abstractions

perform better than the full vocabulary in triggering new classes and have lesser false

negatives. GenSupp generated very few false alarms (3 of 20 best) for the correct

abstractions in both the taxonomies.

6.2.7 Related work

Our work is related to the work on Topic Detection and Tracking (TDT) [APL98,

ALJ00, YZCJ02] but the problem setting and approaches are different. The aim of

TDT is to monitor an on-line feed of news stories and to detect the first occurrence of a

new real world event reported in the news. This is called First Story Detection (FSD)

and these stories are tracked further using threshold based vector space similarity.

Allan et al. [APL98] introduced the important concept of surprising features(words);
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features with occurrences temporally far away from their previous occurrences. Most

popular techniques at new event detection and tracking (Allan et al. [APL98, YZCJ02])

involve a single pass clustering algorithm with well-tuned novelty detection thresh-

olds. Incoming stories are compared to prototypes of existing events and if more than

a threshold away, these stories spawn new events. Allan et al. also showed [ALJ00]

that quality of information organisation tasks like FSD is bounded by quality of the

underlying event tracking system.

Topic conditioned novelty detection [YZCJ02] by Yang et al. breaks the TDT prob-

lem into two parts. They first use a supervised learning algorithm to classify incoming

documents in pre-defined broad topic categories (like airplane accidents, terrorism).

Following this, they compute weights for all terms and NEs in documents, which are

used for topic-specific stop-word removal before FSD. The FSD algorithm used here is

the usual comparison to average event vectors with highly tuned thresholds. The term

weighting of normal tokens and NEs is central to our work because Yang et al. want to

choose topic-level discriminators for topic conditioning, and want a heuristic indicator

for the usefulness of certain types of NEs for FSD. Topic-conditioned binning helps

them in topic-specific stop-word removal. Our idea of abstractions is related but our

binning is across classes and we want to capture abstractions over the entire label-set

to discover new classes.

Some systems also explore the use of NE tags [GDH04, YZCJ02] to define more

meaningful similarities between documents. This is related our notion of abstractions,

but abstractions are more general and not limited to NE tags. Newsjunkie [GDH04] is

a system for personalizing news feeds based on information novelty measures. Among

news articles about an event, the authors find one news article, which contains the most

new information with respect to the seed story about the event. They adopt this batch

pre-processing method to an on-line version which compares incoming stories with a
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sliding window of recent stories. They recognize that a NE-only representation of

news stories sometimes works better than the using the full vocabulary. This intuition

matches ours, but the two settings are very different. They use NEs to find novel

information within a class of stories.

In summary, most work on TDT needs to rely on unsupervised clustering tech-

niques using word-based or NE tags-based similarity and cannot handle multi-labeled

(multi-event) stories. The classification setting has multi-class multi-labeled data with

a limited number of base classes known in advance. This makes it possible to project

documents in a space that better captures their grouping as far as the set of classes

in concerned and our problem is to detect new classes. These two setting are very

different. The classification criteria requires greater coherence and we depend on user

judgment to decide whether a new proposed class f its into an existing label-set.

Retrospective event detection work by Yang et al. [YPC98] is also related to our

problem of evolving label-sets. Retrospective event detection is used for FSD in a

batch off-line mode. They use HAC using group average combination of clusters, with

temporal clues and constraints to exploit serial order in news stories. Stories are or-

dered chronologically and partitioned into non-overlapping consecutive buckets. Each

bucket is clustered using HAC till a reduction factor is reached. All buckets are then

combined and the current clustering is taken as the partitioning of the next clustering.

This iterates till the number of top level clusters is reached. Periodically, each top

level bucket is decomposed and reclustered to maintain events across partition bound-

aries. Yang et al. also give an on-line single pass clustering algorithm with incremental

IDF calculation, history window decay with time, and detection thresholding. Ret-

rospective event detection has a strong temporal component which is absent in the

classification setting. This makes the two problems different.

Concept drift in classification is another related field of work, but it is quite dif-
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ferent from our setting where the set of labels itself changes over time. In concept

drift, the distribution of indicative words, and pattern of any one class changes over

time. A method of dealing with concept drifts in SVMs on text documents is given

by Klinkenberg et al. [KJ00]. They use a moving window of training data and it-

erative train SVMs to capture the time-varying nature of each class. SVMs output

ζα-estimates of their generalisation error during training [Joa98]. These ζα-estimates

are used to pick the best window size that trades-off fast adaptivity (rapidly changing

concepts) and good generalization (when drift is slow). An interesting future work for

us would be discovery of new classes in the face of concept drifts of existing classes.

6.2.8 Discussion

The evolving label-set problem is not the only kind of challenge that arises from

the assumption of training and unlabeled data following a similar distribution. The

constitution of unlabeled data changes over time in multiple ways. Meanings of con-

stituent classes change from what they were during training. Work on concept drift

tries to address this issue by continually updating class specific models giving more

importance to recent representatives of the class.

Classes may loose relevance or simply get dropped from the unlabeled data. This

system level detection can be achieved by monitoring the predicted occurrence rates

for all classes and identifying classes which do not attract any documents. It is not easy

to say whether this happens due to a badly trained model for such classes or whether

the class has lost its relevance in time. Removing such classes from the system might

be detrimental to the system since it cannot be known whether the class may regain

relevance in the future.

In this chapter we have focused on identifying new classes being introduced into

the system one at a time. It is possible to detect a small number of new classes by
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detecting them one by one. If a very large number of new classes are introduced

into the system after training it is not clear whether the problem remains one of

classification and other techniques may be needed to handle such cases. Performance

guarantees in such cases will be hard to estimate.

The main result in our study of the evolving label-set problem is that generative

methods perform better than discriminative methods in selecting a good candidate set

of documents for the likely new class. This, in-spite of discriminative methods having

higher baseline accuracy is an intriguing observation. To explain this phenomenon

we inspected a lot of results and discuss some explanations here. The Hierarchical

Agglomerative Clustering (HAC) in DisConf used the L2 distance metric, whose per-

formance was good such high-precision clusters did exist. However, our cluster picking

heuristic failed to pick these high precision clusters. This shows us that one-vs-others

SVM output scores, though having similar values for similar documents, do not have

large variability and the DisConf heuristic for choosing clusters fails. We tried an-

other heuristic in DisConf that selected clusters whose average of the least negative

(for NOTA as well as non-NOTA) scores was lowest. In the case of NOTA predic-

tions in one-vs-others SVMs, the class with the least negative distance from separator

is chosen as the winner. This heuristic too did not perform much better than the

original heuristic.

To verify whether good clusterings existed, Figure 6.10 compares precision of Gen-

Supp with a hypothetical method (DisCheat) that simply chose the cluster that had

the highest ratio of new class documents. This method upper bounds our discrimina-

tive methods with their cluster picking heuristics. We can see that good clusters do

exist, sometimes having higher precision than GenSupp but our heuristics cannot pick

these clusters.

This shows us that it is hard for heuristics based on distances from separator
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Figure 6.10: Best possible discriminative results

of SVMs to distinguish between new class documents and noisy, multi-labeled mis-

classified documents. This also shows that the measure of support is more important

for the evolving label-set problem than that of confidence. The heuristic for picking

clusters based on lowest average support and purity works very well in the case of

GenSupp. Discriminative models do not provide such a measure [AZ04] and hence are

not very useful for detecting evolving label-sets.

It is possible to get multi-class probability estimates from SVMs by using certain

isotonic regression techniques [ZE02]. Following this it should be possible to apply the

heuristics of GenSupp to choose clusters. However it is not clear if these multi-class

probability estimates fit in with the notion of model support for documents which

works so well for GenSupp. This investigation is left for future work.

6.2.9 Summary

We have introduced the evolving label-set problem and presented generative and

discriminative methods for dealing with this problem in text classification systems. We

introduced the notion of abstractions, which helps the user in understanding label-sets.

We use abstractions as a basis for checking the existence of new classes in unlabeled

data. We presented the GenSupp, SortPrD, and PrDNewClass algorithms which use
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state-of-the-art generative models, and the NotaSVM and DisConf algorithms using

discriminative classifiers. An interesting result of our experiments was that though

discriminative models were better in text classification performance, generative models

outperformed them in Class-Detector experiments.

We saw that though DisConf could discover new class clusters, the unsuitability

of SVM scores prevented us from choosing these clusters. It will also be interesting

to see applicability of our methods for novelty detection and TDT which are similar

yet different tasks. Another opportunity for future work is presented by the triggering

problem which we would like to study more formally and characterize the existence of

a new class by looking at unlabeled data.

In future work, we would like to integrate evolving label-set detection in working

text classification systems and workbenches like HIClass [GHSC04]. We have consid-

ered the introduction of one class at a time. This needs to be extended to detect more

than one class at time. Preliminary results with successive detection of one class at a

time are satisfactory but there is room for improvement.

6.3 Bootstrapping training documents and feature

sets

In the previous section we looked at bootstrapping label-sets in nascent text

classification tasks by tracking temporal evolution of label-sets. In this section, we

present methods for bootstrapping documents and feature sets, again in the context

of new text classification tasks where very limited training data is available. We study

interactive text classification systems with special focus on providing mechanisms to

aid the user in giving expert input in the form of document and term labeling deci-

sions. We present an active-learning based paradigm with significant novel additions
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in terms of kinds of data handled and aids that help the user with very little cognitive

load.

6.3.1 Interactive text classification systems

We present the broad architecture of an interactive text classification system in

Figure 6.11. This architecture focuses on document and term labeling (feature engi-

neering) active-learning conversations between the system and a human expert. The

three main modes of interaction are (1) Document-level interaction where the system

chooses documents for which it needs human judgment to help it learn better models,

suggest labels, and check consistencies and conflicts (2) Word-level interaction where

the system suggests discriminative terms for human review, accepts engineered fea-

tures into the classification models, and add/drop features for certain classes (3) Model

and data exploration where the user can inspect the learned models and drill down

into documents, terms, and see a variety of accuracy summaries. In order to construct

such a system, we first choose a classification model amenable to the above design re-

quirements. Next, we present the detailed document and feature level bootstrapping

operations to help take a small amount of training data to good accuracy levels.

Figure 6.11: Architecture of an interactive text classification sys-

tem - bootstrapping documents and features

The first step in the design of interactive systems is to choose a flexible classification

model that (1) suits state-of-the-art automated learners and (2) can be easily inter-
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preted and tuned by the user. A document is a bag of features. Usually, features are

words after minor processing like stemming and case-normalization. But the user can

also (dynamically) define features to reflect domain knowledge. E.g., month names or

currency names may be conflated into synthetic features. On the other hand, the user

may notice harmful conflation between “blood bank” and “bank”, and define “blood

bank” as a single compound feature. We will continue to use term, word and feature

interchangeably where no confusion can result. Documents are represented as unit

vectors.

Labeled documents can be associated with more than one class in general. We

choose linear additive classifier models, where each class c is associated with a set

of weights wc
1, . . . w

c
T corresponding to the T terms in a vocabulary. Each document

is represented by a vector of non-negative weights ~x = (x1, . . . , xT ),each component

corresponding to a feature. The classifier assigns a document all class labels c for

which wc · ~x + bc ≥ 0 where bc is a scalar per-class bias parameter. As documents

vectors have only non-negative components, both magnitude and sign of components

of wc give natural interpretations of salience of terms.

The linear-additive model generalizes a number of widely-used classifiers, including

NB, maximum entropy, logistic regression, and SVMs. We focus on SVMs in our

work for their high performance and ease of use. Given documents di with labels

yi ∈ {−1, +1}, a two-class linear SVM finds a vector w and a scalar constant b, such

that for all documents yi(wc · di + b) ≥ 1, and ||wc|| is minimized.

When the application demands more than two classes, one can (1) rewrite the

above optimization slightly, with one w vector per class, so that the discriminant

wcj
· di + bj is largest for the correct class cj; or (2) build an ensemble of SVMs, each

playing off one class against another (“one-vs-one”), and assigning the document to

the class that wins the largest number of matches; or (3) build an ensemble of SVMs,
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as many as there are classes, each predicting an yes/no label for its corresponding class

(“one-vs-rest” or “one-vs-others”). In practice, all these approaches are comparable in

accuracy [HL01]. We use one-vs-others as it is easily extended to make multi-labeled

prediction and is efficient.

6.3.2 Active learning on documents

The system starts with a small training pool of labeled documents L and a large

pool of unlabeled documents U . Assume that the number of class labels is k and

each document can be assigned multiple labels. We train k one-vs-others SVMs on

L. Our goal during active learning is to pick some unlabeled documents about whose

predictions the classifier is most uncertain. Various measures are used for calculating

uncertainty with SVMs [TK00]. However, these assume binary, single-labeled docu-

ments. We extend these to the multi-class, multi-labeled setting as described next.

Uncertainty

Each unlabeled document gets k discriminant values, one from each SVM in the

one-vs-others ensemble. We arrange these values on the number line, and find the

largest gap between adjacent values. A reasonable policy for multi-labeled classification

using one-vs-others SVMs is that discriminant values to the right of the gap (larger

values) correspond to SVMs that should be assigned a positive label to the document

and the rest should be negative.

We need this policy because, in our experience with one-vs-others ensembles, as

many as 30% of documents may be labeled negative by all members of the ensemble.

For single label classification, it is common to pick the maximum discriminant even if

it is negative. Our policy may be regarded as an extension of this heuristic to predict

multiple labels.
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With this policy, we declare that document to be most uncertain whose this largest

gap is the smallest among all documents. When documents are restricted to have one

label, this reduces to defining certainty (confidence) in terms of the gap between the

highest scoring and the second highest scoring class.

Bulk-labeling

The user could label these uncertain documents one by one. But experience sug-

gests that we can do better: often, many of these document are quite similar, and if

we could present tight clusters that the user can label all at once, we can reduce the

cognitive load on the user and speed up the interaction.

We pick the u most uncertain documents and compute pairwise vector-space simi-

larity between documents in the uncertain set, and prepare for the user a cluster/subset

of fixed size (set by the parameter s) that has the largest sum of pairwise similarities.

When showing these uncertain clusters to the user, we also provide an ordered list

of suggested labels. The ordering is created by taking the centroid of each uncertain

cluster and finding its similarity to the k centroids of positive training data of the k

classes. Figure 6.12 summarizes the active bulk-labeling process for documents.

An alternative is to use the existing classifier itself to propose suggestions based

on the confidence with which the documents in the uncertain cluster are classified into

various classes. However, we feel keeping the same suggestion list for all documents

in each uncertain cluster reduces the cognitive load on the user. Also, empirically we

found in the initial stages this provides better suggestion than the SVMs.

The user provides feedback to the system by labeling all documents in an uncertain

cluster in one shot. The labeled documents are inspected by a conflict check module

for consistency. We defer discussion of this topic due to lack of space. Once the user

confirms the labels,the newly labeled documents are removed from U and added to L.
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1: Input: A labeled pool L and an unlabeled pool U of documents

2: Output: Set of documents and suggestions to present to user for manual labeling

3: while user wants to continue with active labeling do

4: Train a A-vs-notA SVM ensemble on T

5: Calculate uncertainty on all documents in U :

6: for all documents d ∈ U do

7: Get k scores by applying the k SVMs to d. Find the largest gap in score

values.

8: end for

9: Sort the |U | gaps in ascending order and add top u to the uncertain set.

10: Select the s most similar documents from top u

11: Suggesting ranked list of labels for the group s:

12: for all k classes do

13: Find similarity between centroid of s and centroid of positive training data

of class k

14: end for

15: Sort these distances in a suggested list of classes

16: Present s and the ranked list of k suggestions to the user for active labeling

17: Accept multi-labeled suggestions for all documents in s. Check for conflicts

18: Add these s documents to L with user provided labels and remove from U

19: end while

Figure 6.12: The algorithm for active learning on documents

The system then iterates back to re-training the SVM ensemble.

6.3.3 Term level active learning

In interactive classifier construction, users often find it easier to bootstrap the la-

beled set using trigger terms (that they already know) rather than tediously scrutinize

lengthy documents for known triggers. We demonstrate this with an example from

the Reuters-21578 dataset shown in Table 6.4. We trained two SVMs using the inter-

est class in Reuters-21578; the first trained with a single document per class and the

second trained with 50 documents per class. For each SVM, we report some terms
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corresponding to the maximum positive weights in the table. The SVM using more

data contains terms like “rate” “fe” (foreign exchange), “pct” (percent), and “inter-

est”: that a user can readily recognize as being positively associated with the label

interest that are missing from the first SVM.

Table 6.4: Training ‘interest’ with 1 and 50 training documents

Num labeled=1 Num labeled=50

Term w Term w

forecast 0.40 rate 2.08
bank 0.29 fe 1.97
noon 0.20 pct 1.65
account 0.20 market 1.26
oper 0.14 custom 1.01
market 0.14 interest 0.92
england 0.09 forecast 0.92

stg 0.87
bank 0.83

We allow a direct process of proposing trigger terms within the linear additive

framework. We believe such manual addition of terms will be most useful in the

initial phases to bootstrap a starting classifier which is subsequently strengthened

using document-level active learning. We propose a mechanism analogous to active

learning on documents to help a user spot such terms. SVMs treat labeled terms

as mini-documents whose vector representation has a 1 at the term’s position and 0

everywhere else, resulting in standard unit length document vectors.

We develop a criterion for term active learning that is based on the theoretically

optimum criterion of minimizing uncertainty on the unlabeled set but avoids the ex-

haustive approach required to implement it [CGJ95, TK00, FSST97] by exploiting the
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special nature of single-term documents.

Consider adding a term t whose current weight is wt in the trained SVM. For terms

not in any of the labeled documents wt = 0. Suppose we add t as a “mini-document”

with the user-assigned label yt. Let the new SVM weight vector be w′. Since the term

t is a mini-document whose vector has xt = 1 and ∀t′ 6= t, xt′ = 0, we can assume that

in the new w′ only wt is changed to a new w′
t and no other wt′ is affected significantly.

This is particularly true for terms that do not already appear in the labeled set. From

the formulation of SVMs, yt(w
′
t + b) ≥ 1.

If the current wt is such that |wt + b| ≥ 1 then adding t will probably not have

any affect. So we consider only those ts where |wt + b| < 1. Adding t with a label

+1 will enforce w′
t + b = 1 i.e., w′

t = 1 − b and with a label of −1 will make it

w′
t = −1− b. For each possible value of yt = c, we get a new value of w′

t(c). Thus we

can directly compute the new uncertainty of each unlabeled document x by computing

the change in the distance from separator value as (w′
t(c)−wt)xt, since uncertainty is

inversely proportional to distance from the separator. Let Pr(c, t) be the probability

that the term t will be assigned to class c, as our weighing factor. We estimate

Pr(c, t) by the fraction of documents containing term t which have been predicted

to belong to class c. We then compute the weighted uncertainty WU(t) for a term t

as WU(t) =
∑

c U(c, t)Pr(c, t) and then select the term with the smallest WU(t) for

labeling. Other details and approximate variants can be found in [Har04]. This gives

us a way to compute the total uncertainty over the unlabeled set without retraining

a SVM for each candidate term.

6.3.4 Experiments

We have experimented with several text classification tasks ranging from well-

established benchmarks like Reuters-21578 and 20-newsgroups to more noisy classification
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tasks, like the Outdoors dataset, chosen from Web directories [SCG03]. It is difficult to

quantify the many ways in which HIClass is useful. Therefore we pick a few measures

like the benefits of active learning with terms and document to report as performance

numbers. We also present some results which quantify the cognitive load on the user

and try to show how HIClass eases the user’s interaction and labeling process.

HIClass consists of roughly 5000 lines of C++ code for the back-end and 1000 lines

of PHP scripts to manage front-end user interactions. The front-end is a web browser,

readily available on any user’s desktop. XML is used to pass messages between the

front-end and the server back-end. LibSVM [CL] is used as the underlying SVM

classifier.

All our development and experiments were done on a dual-processor P3 server

running Debian Linux and with 2GB RAM. We report numbers for fixed settings of

some of our system parameters. Further experiments can be found in [Har04]. Unless

otherwise stated, the number of initial documents per class is set to 1, the number of

documents selected for bulk labeling is 5 and the number of uncertain documents over

which we pick similar clusters (the parameter u of Section 6.3.2) is set to 75.

Figure 6.13: Reuters-21578 - Micro and Macro-averaged F1 on held-out test data while

increasing training set size, randomly versus using document level active learning.
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Document-level active learning

We now show how active learning on documents can reduce the number of docu-

ments for which the user needs to provide labels in a multi-class, multi-labeled setting.

We started with one document in each class and added 5 documents in each round.

All graphs are averaged over 30 random runs. Figure 6.13 compares the micro and

macro averaged F1, of selecting 5 documents per round using active learning and using

random selection for Reuters-21578 (similar results with other datasets omitted due to

lack of space). We see that active learning outperforms randomly adding documents

to L and reaches its peak F1 levels faster.

Reducing labeling effort

We next show the effectiveness of the two techniques that we proposed in Sec-

tion 6.3.2 for reducing the effort spent for labeling a document. For lack of space we

only show results with Reuters-21578 in this sub-section.

Quality of Suggestions: We quantify the quality of suggestions provided to the

user by the average rank of the true labels in the suggested list. We see in Figure 6.14

that even in the initial stages of active learning the true classes on an average are

within rank 4 whereas the total number of possible classes is 20 for this dataset. We

also see that the suggestions with u fixed at 75 are better than at 10 as expected.

Bulk-labeling: We quantify the benefit of bulk-labeling by measuring inverse

similarity, defined as the number of true distinct labels in a batch of s documents as

a fraction of the total number of document-label pairs in the batch. So, if s = 5 and

each document in a batch has one label and all of them are the same, then the inverse

similarity is 1
5
.
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Figure 6.14: Reuters - Quality of sugges-

tion measured as the rank at which correct

labels are found in the suggested labels

Figure 6.15: Reuters - Benefits of bulk-

labeling measured as inverse similarity de-

fined in Section 6.3.4

It is reasonable to assume that the cognitive load of labeling is proportional to the

number of distinct labels that the user has to assign. Thus, Figure 6.15 establishes

that our chosen set of similar documents reduce cognitive load by a factor of 2. The

benefits are higher in the initial stages because then there are several documents with

high uncertainty to choose from. With higher number of documents per batch, the

benefits get larger.

We cannot set s to be very high because there is a trade-off between reducing

effort per label by bulk labeling similar documents and increasing number of labels

by possibly including redundant documents per batch. If we calculated labeling cost

in terms of number of documents to be labeled, the optimum strategy is to label the

most uncertain single document per batch. But the effort the user has to spend in

deciding on the right label for rapidly changing document contexts will be high. The

right trade-off can only be obtained through experience and will vary with different

classification tasks and also the user’s experience and familiarity with the data.
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Figure 6.16: Adding labeled terms in score order Reuters (left) and 20-newsgroups

(right)

Term-level active learning

Our goal here is to evaluate the efficacy of training with labeled terms. We take

all available labeled documents for a class and train a one-vs-rest SVM for that class.

All single-term documents that are predicted as positive or negative with very large

margins (above b/3 here) are labeled with the predicted class and the rest are not

labeled. We then start with a SVM trained initially with a single labeled document

on each side and keep adding these collected labeled terms in order of the magnitude

of their weights (the AllData method). We also evaluate the performance of our term

level active learning described in Section 6.3.3. However, we use an approximation

algorithm which is less time-intensive and computationally efficient. We select terms

with higher values of f(t) where f(t) = (
∑

i∈pos xit−
∑

i∈neg xit)∗ (N− (pos−neg)(b+

wt)) where N is the total number of unlabeled documents, and pos and neg refer to

number of positive and negative unlabeled documents.

In Figure 6.16 we show the resulting accuracy on 8 classes of Reuters and 3 classes

of the 20-newsgroups dataset. Active learning on terms clearly works as expected

though the gains are small. This is to be expected since SVMs are trained with very

few terms instead of entire documents. Random selection performs much worse in
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both the datasets. This confirmed our intuition that term-level active learning is best

viewed as a bootstrapping technique followed by document-level active learning.

6.3.5 Related work

Most earlier work on applying active learning to text classification [TK00, MN98b]

assumes a single binary SVM whereas our proposed scheme is for multiple one-vs-

othersSVMs and for multi-labeled classification. Active learning has also recently

been applied to the problem of selecting missing attributes of labeled instances whose

values should be filled in by the user [LMG03]. This is different from our setting of

term active learning because our goal is to add terms as additional labeled instances.

The notion of labeling terms is used in [ALM+03] for building lexicons of terms related

to a concept. So the goal there is not to assign documents to categories but to exploit

the co-occurrence patterns of terms in documents to categorize terms.

Recently Raghavan et al. [RMJ05] have worked on interactive feature selection

in active learning systems. They show that feature re-weighting works better than

selective sampling and use this notion to acquire human expert opinion of terms rather

than documents. Working with features instead of whole documents takes much less

time and interleaving both speeds up the active learning cycle. This is consistent with

our motivation and observations with HIClass where we use active learning on terms

to bootstrap the classifiers in their initial stages when enough labeled documents are

not available for training.

6.3.6 Discussion

Our aim in building the HIClass interactive workbench was to aid in bridging the

chasm between industry and academia perceptions of text classification systems. The

main guiding design principle behind HIClass was to have a working system that could
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be built from scratch and taken up to high accuracy levels with human guidance. We

used active learning on terms and documents to bootstrap the classification models as

fast as possible. It was important to combine human understanding of real world con-

cepts with the processing power of the machine through a variety of features like data,

model, performance summaries, feature engineering, a document labeling assistant

capable of bulk labeling and conflict checking, among others.

Our own experience with this version of HIClass was very fruitful and insightful.

This leads us to think about a generic text classification research workbench that

something like HIClass can become. Apart from the features already incorporated

in HIClass it would be interesting to extend it to include at least some of the work

mentioned throughout this report.

6.3.7 Summary

We have described HIClass, an interactive workbench for text classification which

combines the cognitive power of humans with the power of automated learners to

make statistically sound decisions. The system is based on active learning, starting

with a small pool of labeled documents and a large pool of unlabeled documents. We

introduce the novel concept of active learning on terms for text classification. We

describe our OLAP-like interface for browsing the term-class matrix of the classifier

cast as a linear additive model. The user can tune weights of terms in classes leading

to better, more understandable classifiers. HIClass provides user continuous feedback

on the state of the system, drawing her attention to classes, documents, and terms

which would benefit by manual tuning.
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Next-generation text classification

platforms

7.1 Introduction

In the previous chapters we looked at a number of novel algorithms to tackle a va-

riety of problems encountered in real-world text classification settings. The common

underlying thread in our work has been the exploitation of inter-class relationships.

We discovered mappings between topics in related label-sets to build better classifiers

as well as propose ontology maintenance tools. We exploited confusion between re-

lated classes to tackle the problem of scaling multi-class classifiers using hierarchical

and non-hierarchical methods. We also proposed new kinds of features sets called

abstractions to develop methods for tracking temporal evolution of label-sets in text

classification systems. We developed better discriminative multi-labeled classification

algorithms by countering overlap between class boundaries. Finally, we looked at var-

ious ways to bootstrap classifiers from training documents and feature sets when text

classification systems are being built from scratch.

The main focus of this thesis has been to look at labels and label-sets as important

entities in the text classification setup. All our work exploits inter-class relationships

149
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or the structure of label-sets in text classification systems. The set of classes has

usually been assumed fixed in earlier text classification research and only documents

and features have received attention. In this chapter, we present a unified view of

all our work and propose a high level design architecture for next generation text

classification platforms.

One of the workbenches widely used in the research community today is the BOW

toolkit [McC98]. The toolkit is well designed for the research community, allowing

quick access to feature selection options, classification models, accuracy calculations

and the like. Researchers are happy to use the toolkit since they can customise vari-

ous components and are usually interested in some off-the-shelf capabilities it offers.

However it is not suitable for large-scale deployment in operational settings. It as-

sumes a rigid data format, class structure, lacks any interaction to incorporate human

expertise, and is restrictive in the kinds of text mining applications it can be applied

to. We believe significant extensions to such toolkits are needed in the near future

for text classification systems. We feel the time is appropriate to design a generic

text classification platform. Such a platform will provide basic system primitives to

construct text classifiers from scratch and should aid in bringing much needed stan-

dardisation to the way systems are modeled and evaluated today in research as well

in real-life settings.

Outline: We outline the main entities of the platform, namely, classes, documents,

and terms, in Section 7.2. For all these entities, we highlight their role in the proposed

platform and relate them to the various pieces of work we have presented earlier

in this report. We outline a broad architecture in Section 7.3. The main compo-

nents of the platform, in addition to the three entities and their interactions, are the

data summaries module outlined in Section 7.3.1 and the interaction UIs outlined
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in Section 7.3.2. We recount our experiences in building HIClass, an interactive text

classification workbench modeled on the lines of the platform proposed in Section 7.3.3.

We summarise in Section 7.4.

7.2 Platform entities and their interactions

There are many desirable features of a general-purpose text classification platform.

In order to propose an architecture for such a platform, we first need to define the

primary entities and their interactions. Document and classification models are the

first important kind of entity to design for. Features are the second main entity in the

platform. Recall that the main focus of our work has been to treat classes as important

entities and we would like the proposed platform to define their characteristics and

relationships with other entities. We would like classes (and label-sets) to be the third

entity in the platform.

Figure 7.1: Entities and their interactions

Figure 7.1 shows classes, documents, and features as the three main entities and

their interactions in future text classification platforms. The thin straight arrows in

the figure depict basic relations between the entities and the curved thick arrows show
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interactions that enable us to build various standard and novel applications. Features

are events in documents and could be simple text tokens as in a BOW model or could

be more complicated events detected by NLP tools. Documents are collections of

features and their co-occurrence statistics give rise to many interesting applications

on the term-document matrix. Classes give rise to features in a generative sense and

classes are defined as collections of documents.

Both features and documents are important in determining the meanings of classes

and hence both these participate in active learning steps to help build up models of

classes with the help of human labeling expertise. Interaction of documents with

classes at the correct level of abstraction gives rise to applications like learning map-

pings between label-sets as we saw in Chapter 3. Classes interacting with each other

give rise to relationships like confusion and overlap. Exploiting these allowed us to

handle issues of scalability and multi-labeled classification. Interaction of appropri-

ately designed features involving label-sets helped us handle the temporal evolution of

label-sets. We see that these interactions between the three main entities is a driving

principle to consider when building next-generation text mining systems.

In the rest of this section, we study these entities in detail. We look at various

document and classification models in Section 7.2.1 and the feature design and engi-

neering modules of the platform in Section 7.2.2. We look at classes, label-sets, and

labeling interactions in Section 7.2.3.

7.2.1 Document and classification models

We discuss desirable properties of document and classification models that form

the main entities in the proposed platform. We begin by discussing document models,

document representation, and event models among other issues. Following this we

discuss various classification models that will be needed in the platform.



Chapter 7. Next-generation text classification platforms 153

Document models

Documents are traditionally treated as a bag-of-words in most text classification

packages in the research community. Bag-of-words has become a standard model for

text classification research primarily because implementation and evaluation is very

easy and some extent of standardisation has occurred in the kinds of pre-processing

done across systems making published results somewhat comparable. Steps like stem-

ming, stop-word removal, and selecting features by counts or statistical measures (de-

tails in Section 2.2.2) is common. The exact number of features selected by statistical

measures or by corpus document counts has no standardisation whatsoever and usually

optimizes an accuracy measure through validation.

An important step in any next generation platform will be to push for standard-

isation in feature selection mechanisms and have all options ready and implemented

for the administrator to pick and choose. Since researchers and practitioners choose

document models customised to specific tasks at hand, such standardisation may not

be achievable, but common terminology and inter-operable parameters need to be de-

fined and supported by the platform. This general standardisation issue is out of our

current scope.

Apart from the BOW model, a variety of research has found great value in using

various types of features detected by NLP tools. NE recognition has been used in

many applications and we have also used NE tags to define abstractions in tackling

the evolving label-set problem in Section 6.2. Generally, the notion of abstractions use

some higher level properties of text instead of tokens to select features. This notion ex-

tends to various alternate representations of documents including NE tags, POS tags,

and HTML properties of pages. The pre-processing module of the platform should

provide a choice of various mechanisms including the above to the administrator.
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An important part of selecting document models for the platform is to ensure the

chosen model is amenable to active learning. This is important to be able to incor-

porate human feedback in the form of document labeling for uncertain documents to

help the classifier learn better classification models. The most important module when

interactively bootstrapping text classification systems is the active learning module

where human expert decisions are leveraged to grow the training set by including use-

ful unlabeled examples (details in Section 6.3.2). From an implementation point of

view we need to remember while designing the system that individual documents will

need to be displayed to the user in many different ways. These could be showing the

original document, showing various abstractions of the document, showing summaries,

presenting various parts/features of the document differently and so on. These simple

requirements impact storage level considerations and the general disk and memory

representation data structures. From general experience the sparse vector format and

an inverted index suffice for representing documents internally and externally; it is

amenable to all classification models, it can display the original document in various

representation, and is simple and efficient.

Classification models

We saw in Section 2.3 that generative and discriminative classifiers are the two

broad types of models used in research systems. Many industry-grade applications

report good text classification performance with well-tuned rule-based systems. The

choice of a classification model is based on the application. The main task of classification

models selected in the platform will be to respond to batch-mode signals like ‘train’,

‘predict’, ‘tune’ using different data subsets. The models will also need to expose

learned parameters in various forms. For discriminative classifiers like SVMs, distance

of a document from various hyperplanes, or signs and weights of features in learned
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hyperplanes will be needed. Generative models need to expose different probability

estimates like Pr(d|c), Pr(c|w) and so on.

It is well known that SVMs outperform all competitor models in terms of system

accuracy, but accuracy is rarely the only end goal. Training SVMs is roughly quadratic

in the number of training instances in binary classification problems, and we need to

train many binary SVMs for multi-class multi-labeled problems. Our approach to

tackling the problem of scalability is to exploit the notion of confusion between classes

using GraphSVM in Section 4.3. We saw how we could combine the speed of NB

with the accuracy of SVMs for learning scalable multi-class models without sacrificing

accuracy. A moderately accurate but one-pass training classifier like NB allowed us

to group confusing classes together for further accurate classifier learning with SVMs.

The cross-training framework introduced in Chapter 3 also showed very differ-

ent results with generative and discriminative models. EM2D, the generative cross-

training variant, benefited in accuracy from 2d transfer of model information by learn-

ing Bayesian parameters over two related label-sets. On the other hand, SVM-CT,

the discriminative variant, on the other hand had meagre accuracy improvements

since the SVM baseline already had high accuracy, but we could infer insightful map-

pings between the label-sets, which can assist taxonomy maintenance. Related to

cross-training was our experience with multi-labeled classification in the presence of

overlapping class boundaries. We were able to design better discriminative methods

to exploit labeling correlation and co-occurrence.

While building an interactive text classification workbench [GHSC04], we had suc-

cess with linear additive models like SVMs as the base classification model. This

allowed us great leverage in designing, tuning, and interpreting features. We incor-

porated the document-level and term-level active learning techniques described in

Section 6.3 to bootstrap the construction of these classifiers. Each class c is associated
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with a set of weights wc
1, . . . w

c
T corresponding to the T terms in a vocabulary. Each

document is represented by a vector of non-negative weights ~x = (x1, . . . , xT ), each

component corresponding to a feature. The classifier assigns a document all class

labels c for which wc · ~x + bc ≥ 0 where bc is a scalar per-class bias parameter. As

documents vectors have only non-negative components, both magnitude and sign of

components of wc give natural interpretations of salience of terms. The linear ad-

ditive model generalizes a number of widely-used classifiers, including naive Bayes

(NB), maximum entropy, logistic regression, and support vector machines (SVMs).

Our implementation focused on SVMs.

It is clear that multiple classification systems must co-exist within the platform.

We propose to use linear additive models as the platform’s base classification method.

We have seen how generative and discriminative models have different advantages

in different settings. For scalability we saw how inexpensive NB classifiers can help

efficient training of SVMs in Section 4.3. From cross-training we saw different kinds

of gains in the generative and discriminative variants. In Section 6.2 we saw newer

generative models working very well to discover new classes in unlabeled data via the

notion of abstractions.

In summary, we need a uniform sparse vector representation of documents. We

need inexpensive generative models for inferring the confusion matrix thus giving a

general picture about the ease of separating/predicting the classes. We need other

generative models for a host of high level applications like proposing class mappings,

suggesting ontology changes, and tracking the evolution of label-sets. For the base

classification sub-system we propose linear additive models like high performance

SVMs. In the next section we take a detailed look at characteristics the feature

engineering module of the platform should have to develop high performance systems.
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7.2.2 Feature engineering

We now review various feature engineering options in the proposed platform. Gen-

erating word count features from the BOW representation is very simple. However, in

Section 6.2 we also saw the immense value that simple NLP driven features bring, in

terms of understanding and improving the capability of the system. There are some

very simple examples where we saw that feature engineering beyond the BOW model

is essential to enhance the accuracy of the system. Fast evaluation over a variety of

test data enables a user to easily identify limitations of a trained model and perhaps

the associated feature set. Most users, on inspection of the set of scores of existing

features and classes, will be able to propose a number of modifications to the feature

set. Some of these modifications may not impact performance on the available test set

but could be beneficial in improving the robustness and performance of the classifier

in the long run. For the Reuters-21578 dataset, close inspection of some of the terms

shown to have a high positive weight for the class crude reveals the following:

• “Reagan” is found to be a positive indicator of the class crude though proper

names should be identified and treated differently.

• “Ecuador” and “Ecuadorean” reveal insufficient stemming.

• “World bank” and “Buenos Aires” should always occur together as a bi-gram;

“Union”, a high weight term for crude, should be associated with “Pacific Union”

in crude, but as “Soviet Union” in other classes.

• Month names, currencies, date formats, proper nouns should be recognized

and grouped into appropriate high-level features to indicate concepts like time,

money, and parts of speech respectively.
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A general text classification platform should be designed to allow close supervision

of features through feature engineering interaction. Ideally a human expert should be

able to incorporate domain knowledge by introducing and designing types of features

at the aggregate level (like designing lexical analysers for currency value ). There

should also exist some facility to tweak individual features, as in some of the examples

above. While an operation like named-entity recognition will take care of some of

these, there will be some mistakes which the user should be able to correct through

an appropriately designed user interface.

In Section 5.3 we saw that similar classes overlap with each other and share many

features. Say we are classifying documents in a general web directory. The words

‘match’ and ‘referee’ are important in distinguishing Sports classes from Science classes

but these words are useless within all Sports sub-classes. We designed algorithms that

include new kinds of features that capture correlation between document label-sets for

better multi-labeled classification. This applied to our feature design in discriminative

cross-training as well.

Another important contribution of our previous work was the notion of abstractions

to capture high level features and properties of words beyond just word token and

named-entities. In Section 6.2 we saw the use of abstractions to help solve the evolving

label-set by providing better document representations as well as allowing the user to

understand the label-set and decide if it needed to be augmented with a proposed new

class.

In our work interactive text classification workbench, we provided an OLAP-like

interface to browse class-document-feature matrices and tune the contributions of

different features. Our approach is to provide discard, positive, negative, and keep

semantics to weights for features learned by linear SVMs with very few training ex-

amples. The discard operation removes the feature in question from all documents of
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the class in question. Forcing a feature to have positive (negative) weight keeps the

feature only in the positive (negative) document set of that class’s SVM and retrains.

Details of this user interaction appear with screen shots in the next section. Coupled

with the term level active learning discussed in Section 6.3.3, we found it was possible

to significantly boost accuracy of our classifiers in an intuitive manner with human

guidance in spite of having very limited training data.

We see that feature engineering is a very important aspect of the proposed plat-

form. Choice of a correct feature set is important, but we also saw how keeping

alternative representations and feature sets has its merit in discovering relationships

between classes and tackling the evolving label-set problem. These situations are ex-

pected in real-world settings and when building a system from scratch. The design

and implementation of this feature engineering component should have facilities for

efficiently switching between representations and leveraging human feedback.

7.2.3 Labels and labeling

The main focus of our work has been to promote class labels as first level entities

at par with features and documents in text classification settings. In this section, we

look at labels, label-sets and human labeling interactions together as an important

part of the proposed platform.

Our system must support evolution of label-sets. In Section 6.2, we introduced

abstractions to aid the user in determining whether a suggested group of unlabeled

documents formed a valid new class and fit into the existing label-set. We are not

aware of other systematic approaches to this problem in the classification setting,

and as seen in Figure 6.1, the human interaction step is crucial before augmenting

label-sets and retraining the classification models.

We note that expansion of label-sets is not the only kind of evolution label-sets
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could undergo once we start considering classes as first-class entities in the system.

Classes could lose relevance and hence may need to be dropped from the label-set

or folded into a catch-all “negative” class. A first-cut approach would be to track

distribution of classes in unlabeled data streams over time. Merging classes, splitting

classes, and re-organising hierarchies form the full spectrum of evolution of label-

sets. We are not aware of work that looks at this problem from the abstract level of

considering classes as entities and considering their relationships with each other. Our

work on detecting and folding in new classes is a first step in this direction.

In Chapter 3 we studied the cross-training framework and saw how mappings

learned by the discriminative variant can be used to design taxonomy maintenance

tools. Giving the user access to such mapping graphs between related label-sets allows

the user to redesign, augment, and re-organise the label-set and this is an important

component of the proposed platform. In a Web directory setting, these mappings have

tremendous potential to aid editors. Some example mappings we learned between

Dmoz and Yahoo! appear in the Appendix. Similarly, from our work in Section 4.2,

we can automatically suggest hierarchical organisations of the label-set at hand and

allow the user to inspect similarity between classes through dendrograms and other

statistics. Again we show sample dendrograms output by our methods for various

datasets in the appendix.

The proposed text classification platform should contain the many class and label-

set level operations like the ones mentioned above. In addition we would like to

see heavy interaction with human experts while exerting as little cognitive load on

the users as possible. Several projects reported at the annual Operational Text

Classification workshops [LGM+03] describe applications spanning law, journalism,

libraries and scholarly publications in which automated, batch-mode techniques were

not satisfactory; substantial human involvement was required before a suitable fea-
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ture set, label system, labeled corpus, rule base, and resulting system accuracy were

attained. However, not all the techniques used in commercial systems are publicly

known, and few general principles can be derived from these systems. There is much

scope for building machine learning tools which engage the user in an active dialog to

acquire human supervision about features, document labels, and coverage of label-sets.

When human supervision is available only as document (and term) label assign-

ments, active learning has provided clear principles [CGJ95, TK00, FSST97] and

strategies for maximum payoffs from the dialog. In Section 6.3.2 we studied the

active learning paradigm in detail. Our contribution was an extensible document level

active learning framework that handled multi-class multi-labeled settings and exerted

very little cognitive load on the user through aids like bulk-labeling and conflict check-

ing. We wished to extend the active learning paradigm significantly to include feature

engineering thus exploiting rapidly increasing computing power to give the user im-

mediate feedback on her choices. Section 6.3.3 introduced our idea of term level active

learning and our initial experiments showed this to be a promising approach. Some

screen-shots of our implemented system showing these interaction dialogs appear in

the appendix.

The human interaction discussed above depends on support from the document

models and feature engineering module discussed previously. For document and term

level active learning we need a variety of data statistics to help the user make effective

labeling decisions. When inspecting coverage of label-sets and evaluating fit of pro-

posed new classes, our system shows document summaries via various abstractions as

shown in Figure 6.1.

Another aspect of human interaction is the OLAP-like interface we implemented

for the user to inspect how classes, documents, and features impact each other. The

user can seamlessly browse the current data and classification models at hand and
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suggest feature engineering tweaks discussed in the previous section. Screen shots and

details appear in the next section.

7.3 Architecture

In Figure 7.2 we present a simple architecture of text classification systems. There

is a pool of documents which represents the content at hand that can either be stored

on disk, or could come from data streams or the web. There are standard pre-

processing steps applied to this document corpus, followed by an appropriate choice

of token models, representation methods, and labeling systems. Classification models

are chosen to operate on train-validation-test splits, and classifiers are learned and

stored. Standard choices for all of the above have been described in Chapter 2.

Figure 7.2: The standard text classification setup

Various applications fit this setting where training data for classes is available and

we need to learn models to predict classes for new documents. Spam classification,

email routing, news filtering, web directory maintenance are all well known examples of
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text classification. The differences between these applications come from the structure

of the label-set, the type of classification sought, or the kind of data available for use.

Text classification research has usually considered the label-set to be fixed and has

rarely exploited rich information present in the way classes interact amongst them-

selves and with documents and feature sets. We saw a host of problems we could ad-

dress because we treated classes equally important to documents and features. While

Figure 7.2 can serve as a basic architecture for a next-generation text classification

platform, there are two crucial components that need to be integrated. The first is

a rich variety of data, model, and performance summaries that need to be designed

with the implementation of the system. The second are the user interaction mecha-

nisms that will incorporate human feedback on a host of tasks like document labeling,

feature engineering, inspecting dendrograms, and maintaining label-sets.

In the rest of this section, we look at important characteristics of these data sum-

mary and interaction UI components. We conclude with a description of some of

our experiences with implementing a prototype text classification workbench modeled

along the lines of our proposed platform called HIClass.

7.3.1 Summaries

Interactive evaluation is a very important part of constructing classification sys-

tems. After spending considerable amount of time tweaking and fine-tuning systems,

the user would like to know the resultant end to end performance of the system. In the

research community, evaluation on benchmark datasets is a required component of any

work. The industry also reports numbers to reflect the state of their systems. However

there is a lack of any standardisation in experimental methodology and evaluation.

The proposed platform should make a wide variety of rich data, model, performance

summaries available for user inspection. These statistics can draw the user’s attention
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to classes or areas requiring further tuning or attention.

Quantitative measures like accuracy, F1 and their variants will reveal the state of

the system. Class distribution statistics can draw the user’s attention to classes that

would benefit by further attention. Term distribution statistics will help the user in

feature engineering tasks by guiding feature selection. Qualitative summaries include

many of the tools used in our work presented in earlier chapters. Mappings between

label-sets help the user better organise label-sets and provide a handle into pooling

data from different sources. Dendrograms and confusion matrices give an overview of

the general state of the classification system.

Quantitative evaluation: Quantifying text classification systems usually follows

the route of performing classification experiments on (subsets of) benchmark datasets

and reporting measures like F1 and accuracy or their many variants on held out la-

beled data. However researchers have used many variants of standard datasets like

Reuters-21578 thus making comparison across systems meaningless. No standard fea-

ture selection methodology is defined or specified and there are many ways in which

experiments are reported by different researchers.

The proposed platform implementation should have several data and model sum-

maries in understandable graphical form for the user. At any time, the user should

be able to draw up evaluation summaries on held out test data. Graphs for micro-

average and macro-average precision, recall, F1, and accuracy should be provided. Per

class distribution statistics can draw the user’s attention to problematic, insufficiently

trained classes that need further tuning.

Qualitative evaluation: In Section 4.2 we saw how confusion matrices are a good

representation of the classifier accuracy and the mistakes it is making. They help
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determine relatedness between classes and give a snapshot of system accuracy. Based

on them we saw how to construct dendrograms that further give a hierarchical organ-

isation of classes and are a good corpus visualisation tool.

In Section 3.3 we saw the SVM-CT algorithm for cross-training that generates

interesting mappings between related label-sets. These mappings give interesting in-

sights about the structure of label-sets and make for good ontology maintenance tools.

The platform should provide all these qualitative summaries to the user.

7.3.2 Interaction UIs

We envision the proposed platform will have a variety of well-designed user inter-

faces (UIs) for increased interaction with human experts. We have already seen the

benefits available for text classification systems when they can interact with human

experts. In Section 6.2 we saw how we could detect temporal evolution in label-sets via

expert validation from human experts. Our problem there was to detect new classes

in unlabeled data for which the system was not trained. We presented methods to

automatically select candidates for such new unseen classes but we also argued how

the user was required in the loop since only she could judge the coverage of the existing

set of labels; using abstractions we proposed a new representation of documents which

forcefully brought out the classification criteria for the user.

In Section 6.3 we saw how human document and term labeling conversations could

provide tremendous help in bootstrapping text classification systems being built from

scratch. We presented document and term-based active learning algorithms that took

human feedback on confusing documents and terms to bootstrap classifiers built on

very little training data. An important aspect in such interaction dependent tech-

niques is to leverage machine learning to reduce the cognitive load on users. We

presented some techniques like bulk labeling, ranking suggestions, OLAP-like inter-
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face for browsing and tweaking learned models, and conflict checking to ease the user’s

task as much as possible.

Figure 7.3: Central interactions

The main focus of the interaction UIs is again modeled along the interactions

between the three main entities in the platform viz. classes, documents, and terms.

In Figure 7.3 we see these central interaction between these entities and note how

all user interaction can be designed to be driven from this figure. One box in the

figure represents document and classification models which we discussed in detail

earlier. These models capture human intelligence since they are modeled by the system

architect, and in the text classification setting, inspection of these models is the way

humans understand the system. The models are visualised via a host of summaries

and feature engineering modules for tuning the models; an example is our OLAP-like

interface for browsing, drilling down, and tuning class-document-term matrices.

The user interfaces come into picture when the summary modules are presented

to the user for action. Such action is in the form of active labeling for documents and

terms, but it is also in terms of inspecting and accepting classes proposed for inclusion

in the label-set when dealing with temporal evolution of label-sets. Yet another kind of

interaction is the rich variety of tools other parts of our work has produced in the form

of confusion matrices, dendrograms, mappings between and across label-sets among
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others. Human intelligence or domain knowledge is captured in these interactions and

the system benefits by being able to learn better models.

In the next section, we discuss our initial experiences with building a prototype

working text classification workbench that was modeled closely along the ideas dis-

cussed in this chapter for designing next-generation text classification platforms.

7.3.3 Initial experience

We developed a highly interactive text classification workbench called HIClass (for

Hyper-interactive text Classification) along many of the desirable principles outlined

in this chapter that next-generation text classification platforms should be modeled

on. HIClass [GHSC04] focused on the feature engineering and active learning modules

discussed in Section 6.3. We used SVMs as the underlying linear additive classification

model. We implemented HIClass in a few thousand lines of C for the core back-end

algorithms. User interaction was web-based in a browser front-end coded using PHP

scripts with XML used to pass messages to and from the back-end. The back end

server process ran on a small Linux system. Next, we see some screen-shots that

capture some of the interesting modes of interaction between the system and the

human expert.

Figure 7.4 shows the document labeling assistant built on active learning principles

described in Section 6.3.2. The left pane shows system navigation options. The right

pane contains a group of unlabeled documents presented to the expert user for labeling.

There is a ranked list of suggestions next to each document snippet. The user can

also inspect the entire document to determine its class.

Figure 7.5 shows the influence of a particular term (‘soviet’ here) across different

classes. Occurrence of the term in representative documents of various classes is

highlighted.
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Figure 7.4: HIClass screenshot - Document labeling assistant

Figure 7.6 shows the influence of a single term (‘billion’ in this case) in various

classes in the OLAP-like interface. Unlike the previous screen-shot, in this mode of

interaction, the user can engage in some of the feature engineering options in the

system. This interface is presented in the term based active learning mode (described

in Section 6.3.3) where the user can tweak/label how discriminative the term is for

different classes. The user can force the term to have positive or negative weights for

classes, or can chose to ignore the term from consideration when building a particular

class’s model.

Figure 7.7 shows the OLAP-like interface from a class-driven context. The most

indicative positive and negative terms for a particular class (‘corn’ here) are shown.

This is the feature engineering mode of the system, where after learning on very few

documents, the system exposes its models to the user for tweaking. Here again the

user can set certain terms to have positive/negative/no influence on the said class
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Figure 7.5: HIClass screen-shot - Term evidences across different

classes

from intuition or domain knowledge.

Our OLAP-like interface for browsing classes, documents, and features is our novel

contribution to interactive text classification systems. In addition to providing high

level summaries of the corpus, various details shown in the interface include learned

weights for features, identifying features within documents in a visually appealing

manner, effects of features across various classes, various terms having positive or

negative associations for a class, and so on. The tweaking of these features has been

discussed in Section 7.2.2. Overall we had a very fruitful experience developing and

using HIClass. We modeled HIClass broadly along the lines of our proposed platform

and hence we could leverage many operations like feature engineering and bootstrap-

ping classifiers.
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Figure 7.6: HIClass screen-shot - Term ‘billion’ influencing different

classes

7.4 Summary

A generic text classification platform is hard to design. Significant effort along

the steps outlined in this chapter will be essential before bridging the gaps between

industry and academia perceptions of text classification systems. In general, most text

classification research and practice concentrates on specific sub-problems and tackles

particular assumptions. We are not aware of major work in the area of designing

platforms for text classification. Aspects of such systems have been discussed in

isolation, but to our knowledge, this is the first attempt at proposing such a platform

that combines many interesting applications (developed as part of our work) as integral

components of the platform. Our main contribution in proposing such a platform is

promoting classes as first-level entities along with features and documents in text

classification systems.
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Figure 7.7: HIClass screen-shot - Class ‘corn’ influenced by different

terms

Our aim in building an interactive text classification workbench along the lines of

such a proposed next-generation platform was to have a working, tunable classifier

that could be built from scratch and taken up to high accuracy levels with human

guidance. To achieve this, we used active learning on terms and documents to boot-

strap classifiers. We combined human understanding of real world concepts with the

processing power of the machine through interactive data/model summaries, feature

engineering, and cognitive tools like bulk labeling and conflict checking. Our experi-

ence with building the HIClass workbench modeled along these lines was fruitful.
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Chapter 8

Summary and Conclusions

In this thesis we have presented a range of novel algorithms for solving real-world

text classification problems arising in different situations. The main focus of our work

has been exploiting the notion of inter-class relationships in text classification systems.

We proposed four inter-class relationships and developed algorithms based on them

for different tasks. We learned mappings between label-sets to build better classifiers

and developed taxonomy maintenance tools. We exploited confusion between related

classes to handle scalability issues in large-scale multi-class classification. We overcame

the problem of overlapping class boundaries by proposing enhancements to discrimi-

native classifiers for multi-labeled classification. We introduced the notion of coverage

of label-sets to track temporal evolution in label-sets by detecting new classes in un-

labeled data not present during training.

We also looked at different issues in helping bootstrap text classification systems in

their early stages of construction when very limited training data is available. Along

with the above work of dealing with temporal evolution of label-sets, we also pre-

sented an interactive framework where document labeling and term labeling/feature

engineering conversations with expert users were equipped with aids to reduce cogni-

tive labeling load and quickly increase accuracy of the system.

173
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This led us to recognise the importance of classes as first level entities in text

processing systems. Traditionally the set of classes has been assumed to be fixed,

unchanging, and inter-relationships have been ignored. Our work revolves around

treating classes as first level entities along with documents and terms and exploiting

different inter-class relationships. We concluded by presenting a broad architecture for

next generation text classification platforms as we feel the time is ripe to bridge the

gap between academia and industry perceptions of text classification systems, actively

integrate human knowledge, and relax many of the assumptions usually employed in

building systems.

8.1 Future work

Our work leads to some interesting avenues of future work that we would like to

explore. We would like to theoretically understand cross-training better and devise

formal ways of studying related label-sets. We would like to extend our work in

detecting evolving label-sets to larger scales and devise ways to track other kinds of

evolution in label-sets apart from detecting new classes. The most exciting direction of

work is the idea of building next-generation text classification platforms which could

be used for research as well as real world deployment. Studying this under a formal

framework thus leading to guarantees about the platform is a promising line of work.



Appendix

We show some diagrams in this section to supplement the work presented through-

out this thesis. Mappings between topics for the 5 datasets of Chapter 3 are shown

from Figure 1 to Figure 5 as an addendum to the results presented in Section 3.4.2.

These mappings are drawn between the Yahoo! and Dmoz datasets and positive links

above the threshold of 0.2 are shown plotted using GraphViz1. The full versions of

these mappings can be found at http://www.it.iitb.ac.in/~shantanu/ctdemo/.

Chapter 4 presented the automatic construction of topic hierarchies using den-

drograms derived from NB classifiers as a preliminary step in Section 4.2. Parts of

dendrograms for various datasets are shown from Figure 6 to Figure 10.

Figure 1: Mappings for Autos

1http://www.graphviz.org/
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Figure 2: Mappings for Movies

Figure 3: Mappings for Outdoors

Figure 4: Mappings for Photography
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Figure 5: Mappings for Software

Figure 6: Dendrogram for 20-Newsgroups
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Figure 7: Partial dendrogram for Reuters-

21578

Figure 8: Partial dendrogram for Dmoz 1
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Figure 9: Partial dendrogram for Dmoz 2
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Figure 10: Partial dendrogram for Dmoz 3



Glossary of Acronyms

1. SVM: Support Vector Machine (Section §1.2)

2. NB: Naive Bayes (Section §1.2)

3. HIClass: Hyper-interactive text classification (Section §7.3.3)

4. BayesANIL: BayesANIL [RCKB05]

5. EM: Expectation Maximisation (Section §2.3.1)

6. EM1D: 1-dimensional EM (Section §3.2.1)

7. EM2D: 2-dimensional EM (Section §3.2.2)

8. SVM-CT: Cross-trained SVM (Section §3.3.1)

9. A&S: Agrawal et al.’s algorithm [AS01] (Section §3.3.2)

10. GraphSVM: Graph-based method for scaling SVMs (Section §4.3)

11. BandSVM: SVM with band based negative set pruning (Section §5.3.1)

12. ConfMat: SVM with confusion matrix based negative set pruning (Section

§5.3.2)

13. SVM-HF: SVM with heterogeneous feature kernel (Section §5.2)

14. CRF: Conditional Random Field (Section §5.6)
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15. TDT: Topic Detection and Tracking (Section §6.2.7)

16. FSD: First Story Detection (Section §6.2.7)

17. HAC: Hierarchical Agglomerative Clustering (Section §6.2.3)

18. SortPrD: Sort Pr(d) values method for selecting new class documents (Section

§6.2.3)

19. PrDNewClass: New class seeded by lowest Pr(d) values (Section §6.2.3)

20. GenSupp: Generative method based on support (Section §6.2.3)

21. NotaSVM: SVM method for selecting new class documents from all rejects (Sec-

tion §6.2.4)

22. DisConf: Discriminative method based on confidence (Section §6.2.4)

23. NLP: Natural Language Processing (Section §7.2.2)

24. PEBL: Positive Example Based Learning [YHC02]

25. DAGSVM: Directed Acyclic Graph based ensemble for SVMs [PCST00]

26. LBP: Loopy Belief Propagation (Section §5.6
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5. Discriminative methods for multi-labeled classification
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Tools and Utilities

1. Tool for generating dendrograms given a corpus with a flat set of classes

2. Browsable interface to show mappings between DMOZ and Yahoo! datasets used
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